
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A249 332

DTIC

ILECT[EAR28 992.

THESIS

IMPLEMENTING RELATIONAL OPERATIONS
IN AN

OBJECT-ORIENTED DATABASE

by

Stephen C. Filippi

March 1992

Thesis Advisor: Michael L. Nelson
Co-Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

92-10721e 4 24 157 iI1E*I111I11



UNCLASSIFIED
SECURITY CLASSFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
lf. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONAVAILABILITY OF REPORT

2DECLASSIFICATON-DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (if applicabl) Naval Postgraduate School
Naval Postgraduate School 37
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, Slate, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS"PROGRAM IPROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

IMPLEMENTING RELATIONAL OPERATIONS IN AN OBJECT-ORIENTED DATABASE (U)

12. PERSONAL AUTHOR(S)
Filippi, Stephen Charles

RTYP RER 13b. TIME 14. DATE OF REPORT (Year, Month, Day) 15. A UNMlaster' Th~esis FROM DAT OFRPRTYarOotDy .PG ONr ssFROM _ TO1992, March 176

16. The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by blocknumber)

FIELD GROUP SUB-GROUP OBJECT-ORIENTED, DATABASES, RELATIONAL DATABASES

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis expands the concepts of relational/object-oriented database systems. There are two different approaches
to combining relational and object-oriented databases. This thesis takes the approach of adding relational operations
to an object-oriented database rather than building an object-oriented layer on top of an existing relational database.

The system proposed in this thesis was developed in the object-oriented programming language Prograph. It was
chosen because it contains primitive operations for reading and writing database files to secondary storage and for
manipulating complex data types (e.g., sounds, and pictures).

This thesis demonstrates that the limitations of current systems can be remedied and that the relational/object-ori-
ented database management system is indeed a feasible solution.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
E[ UNCLASSIFIED/UNLIMITED E] SAME AS RPT. IJ DTIC USERS UNCLASSIFIED

. lJEV RrPQI ILE DAL 22b. TELEPHONE (include Area Code) 22cd h.1E SYMBOL• -~cn e Lmeson Y At" (4ub) 646-2026
DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIEDi



Approved for public release; distribution is unlimited

Implementing Relational Operations
in an

Object-Oriented Database

by
Stephen Charles Filippi

Lieutenant, United States Navy
B.S., Jacksonville University, 1986

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March, 1992

Author: _____________________//______
Stephen Charles Filippi

Approved By: j / -
Michael Z. Nelson , Thesis Advisor

C. Thomas ), Co-Advisor

h7obert B . Mc'ZGa, Chairman,

Department of Computer Science

ii



ABSTRACT

This thesis expands the concepts of relational/object-oriented database systems.

There are two different approaches to combining relational and object-oriented

databases. This thesis takes the approach of adding relational operations to an

objet-oriented database rather than building an object-oriented layer on top of an

existing relational database.

The system proposed in this thesis was developed in the object-oriented

programming language Prograph. It was chosen because it contains primitive

operations for reading and writing database files to secondary storage and for

manipulating complex data types (e.g., sounds, and pictures).

This thesis demonstrates that the limitations of current systems can be remedied

and that the relational/object-oriented database management system is indeed a

feasible solution.

Aoesulou Po t

PTIS MA&I
DTtC TAU 5
Unmoice4 0

3?-

iii ~ I | Speota)lliil



Table of Contents

I. INTRODUCTIO N .......................................................................................... 1

II. SURVEY OF THE LITERATURE ......................................................... 4

A. OBJECT-ORIENTED PROGRAMMING ............................................... 4

1. Classes and Objects ............................................................................ 5

2. Inheritance ............................................................................................ 8

3. Encapsulation ..................................................................................... 12

4. Reusability .......................................................................................... 13

5. Polym orphism ...................................................................................... 14

B. DATABASE MANAGEMENT SYSTEMS ........................................... 15

1. Basic Terminology .............................................................................. 16

2. Relational Databases ......................................................................... 17

a. Relational Algebra ......................................................................... 19

b. Lim itations of Relational Databases ............................................ 22

3. Object-Oriented Databases ............................................................... 23

4. Relational/Object-Oriented Databases ................................................ 25

C. PROGRAPH ......................................................................................... 26

1. The Language .................................................................................... 27

a. Classes .......................................................................................... 29

b. Attributes ..................................................................................... 30

c. M ethods ........................................................................................ 32

d. M essage Passing ............................................................................ 33

e. Control Structures ........................................................................ 35

2. Prograph Database Engine .................................................................. 38

III. W HY A N R/O ODBM S ............................................................................. 41

A. DEFICIENCIES IN CURRENT DATABASE SYSTEMS .................... 41

1. Relational Databases ......................................................................... 41

iv



a. Limited Number of Data Types ................................................... 41

b. Loss of Abstraction ...................................................................... 42

c. Tuples Lack Function .................................................................. 43

d. Lack of Inheritance ...................................................................... 44

2. Object-Oriented Databases ............................................................... 45

a. Lack of Mathematical Foundation ............................................... 45

b. Lack of Standardization ............................................................... 45

c. Lack of Support for Relational Operations ................................. 46

3. Relational/Object-Oriented Management System ............................. 47

4. Desired Properties of Database Systems ........................................... 47

B. WHY A RELATIONAL/OBJECT-ORIENTED DATABASE ............... 48

C. WHY THIS WAS THE APPROACH TAKEN ...................................... 49

IV. AN R/OODBMS IMPLEMENTED IN PROGRAPH .......................... 50

A. BASIC ASSUMPTIONS ........................................................................ 50

1. Applications Will Be Developed In Prograph .................................... 50

2. Current DB Persistent ......................................................................... 51

3. Relations Contain Records of the Same Class ................................... 52

4. User-defined Records Must Be Descendents of Class Record .......... 52

5. Every Relation Contains At Least One Key ...................................... 53

6. Every Relational Operation Returns A Temp Relation ...................... 53

B. DESIGN DECISIONS ........................................................................... 54

C. THE STRUCTURE OF THE DATABASE ........................................... 55

D. REQUIRED CLASSES ......................................................................... 56

1. D atabase Class ................................................................................... 57

2. Relation C lass ..................................................................................... 58

3. Tem p Relation class ........................................................................... 61

4. R ecord class ........................................................................................ 62

V. SUMMARY, CONCLUSIONS, & SUGGESTIONS FOR FUTURE
R E SEA R C H .............................................................................................. 64

V



A . SU M M ARY ............................................................................................... 64

B. CONCLUSIONS ................................................................................... 64

C. SUGGESTIONS FOR FUTURE RESEARCH ..................................... 65

1. Implement Relational Operations in a OODBMS .............................. 65

2. Optimization of Relational Operations .............................................. 65

3. Allow Complex Objects to be Keys ................................................... 66

4. Addition of Other Types Of Databases To OODBMSs ..................... 66

5. Standardized Class Library For All OODBMSs ................................. 66

APPENDIX A - CREATING A SAMPLE DATABASE APPLICATION ...... 67

APPENDIX B - ATTRIBUTES AND METHODS ....................................... 80

APPENDIX C - SOURCE CODE ................................................................ 84

LIST OF REFERENCES ................................................................................. 163

BIB LIO G RA PH Y ............................................................................................. 166

INITIAL DISTRIBUTION LIST ..................................................................... 167

vi



LIST OF FIGURES

Figure 2.1 Example Class Definition ................................................................... 6

Figure 2.2 Superclass/Subclass Example ............................................................ 9

Figure 2.3 Multiple Inheritance Problem .......................................................... 10

Figure 2.4 Employee Example .......................................................................... 11

Figure 2.5 Hourly and Salaried Attributes and Methods .................................... 12

Figure 2.6 Simple Relational Database ............................................................ 19

Figure 2.7 Two Union Compatible Relations .................................................... 20

Figure 2.8 Result of Employee Union Supervisors .......................................... 21

Figure 2.9 Result of Employee - Supervisor ...................................................... 21

Figure 2.10 Result of Cartesian Product of Employee with Department ........... 22

Figure 2.11 Result of get-file primitive ............................................................. 28

Figure 2.12 Barnyard Simulator Classes Window ............................................ 30

Figure 2.13 Sample Attribute Windows ............................................................ 31

Figure 2.14 Class methods window ................................................................... 32

Figure 2.15 Case Window for Animal/eat ........................................................ 33

Figure 2.16 Method References ........................................................................ 34

Figure 2.17 Control Structure Example ............................................................ 36

Figure 2.18 Example C Code ............................................................................ 37

Figure 2.19 Synchro Link Example ................................................................... 37

vii



ACKNOWLEDGEMENTS

This thesis was made possible through the efforts of many people. Only a few

will be specifically mentioned here, but if you were involved in my research and

your name isn't here, thank you.

First and foremost, thanks to my advisors Dr. Nelson and Dr. Wu. Had it not

been for their challanging questions and patient guidance this research would have

never been finished.

Special thanks goes to Lynn McKaig of TGSSystems. Without her prompt

response to my incredibly obvious questions, I'd still be looking for solutions. Also

her willingness to send me sample classes to clarify difficult points was most

invaluable.

A warm thank you goes to my many friends at Apple Computer, Inc. Especially

Carmela Zamora and Craig Elliot. Thanks for getting me E.T.O. I regret that it didn't

get used in thi. research.

And for the most important people in my life, my family, without whom I

certainly would not be where I am today. Thanks for all the encouragement, love,

and support, especially from my wife Delilah. I only wish that I had been able to

spend more time with you. And finally a special thank you to my daughters,

Courtney and Gabrielle for making me smile even when my mind was pre-occupied.

viii



I. INTRODUCTION

The purpose of this thesis is to expand upon the concepts of relational/object-

oriented database systems. Much research is being conducted in the area of database

technology. Most research, however, centers around query optimization, distributed

databases, multimedia databases, and expert systems [EN89]. Some research is

being conducted in the area of object-oriented (00) databases; however, most of

this research appears to be directed towards designing 00 databases for specific

types of applications such as computer aided software engineering (CASE) and

computer aided design (CAD) tools.

There has been some research done in the area of combining relational database

technology with object-oriented databases, and, two separate models have been

proposed. The first approach states that to achieve a relational/object-oriented

database management system (R/OODBMS), the object-orientation should be built

on top of an existing relational database [PBRV90]. Specifically, an object-oriented

interface is created to mask the underlying relational database. This interface

appears to perform queries, updates, etc. on objects, but it actually performs the

operations on the data that is stored in the relational database management system

(R/DBMS) to manipulate the data. The other school of thought is to add relational

operations to an object-oriented database [Nels88, NMO90]. This means that an

object-oriented database is responsible for the storage and retrieval of objects.

Relational operations (i.e., relational queries) are performed by methods associated

with objects of the type Relation. The relational operations are built into the object-

oriented database by adding a class Relation to it. This thesis follows the latter

approach.



The main reason that most people choose 00 databases is because they are

storing and manipulating data that cannot ordinarily be handled by conventional

databases. Good examples of these are CAD projects and CASE tools. These types

of applications generally require the ability to store and manipulate graphical objects

as opposed to textual objects. In contrast, relational databases serve a very useful

purpose in most business applications where the bulk of data being stored and

manipulated is simply textual or numeric data that can be stored and manipulated by

normal conventional means. The idea behind this thesis is to join the two different

types of database paradigms into a single fully functioning database model and to

consider alternative ways of implementing relational operations in an object-

oriented database.

This relational/object-oriented database can be shown to be a complete

relational system because it provides the five core relational operations upon which

all other operations can be constructed'. The five basic relational operations are built

into the database management system (DBMS) instead of creating an artificial layer

above the DBMS for them. This allows the user to create a database that is capable

of storing and retrieving objects as well as performing SQL-like 2 queries on the

database.

The database is designed in Prograph 3 [TGS88a, TGS88b, TGS91], an object-

oriented programming language (OOPL) available on the Apple Macintosh4 . This

language was chosen because it contains primitive operations for all database

functions (i.e., disk reads and writes, opening keys, tables, etc.), so there is no need

1. This will be discussed further in Chapter II.

2. SQL stands for Structured Query Language and was designed and implemented by IBM Research
as an interface for a relational database system [EN891. It has become the defacto standard for the
relational database industry.

3. Prograph is a trademark of The Gunakara Sun Systems, Ltd.

4. Apple and Macintosh are registered trademarks of Apple Computers, Inc.

2



to create them. The database system created as part of this thesis is a functional,

albeit minimal, R/OODBMS. The number of 'extra' features was minimized for

clarity. Prograph also handles list processing and manipulation of non-conventional

objects (i.e., pictures, sounds, etc.) very easily which is important to the project's

design.

The remainder of this thesis is organized as follows. Chapter II is a survey of

the literature that forms the background for this research. It sets the stage for future

discussion in this thesis, and provides an overview of the main topics of this thesis:

object-oriented programming, databases, and Prograph. Chapter III presents a

detailed description of the problem addressed in this thesis, the implementation of

relational operations in an object-oriented database. There is also some discussion

on how this idea has been implemented by others, and problems associated with

these implementations. Chapter IV describes the findings of this research. Chapter

V provides a summary, conclusions, and suggestions for future research. Appendix

A is a description of how to use the tools provided to create a database application.

Appendix B is the graphical representation of the attributes and methods for each

class and Appendix C is the source code for the implementation of this system.

3



II. SURVEY OF THE LITERATURE

This chapter deals with three major topics: object-oriented programming

(OOP), database management systems, and the object-oriented programing

language Prograph. Basic terminology and concepts are discussed in this chapter.

No assumptions are made about the readers level of knowledge in these three areas.

However, some familiarity with OOP and database topics may be helpful in fully

understanding the material. This chapter is intended to serve as an introduction to

these three topics, laying the groundwork for the rest of this thesis.

A. OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is a relatively new area of programming whose

origin has been attributed to the programming languages Simula and Smalltalk

[Booc9l,Mica88, SB86]. Although OOP seems to be the hottest sales item in pro-

gramming and program design today, there are very few standards that clearly define

it. Most agree that for a language to be considered object-oriented it must support at

a minimum objects, classes, and inheritance [Nels9Oa].

Creating complex applications using an object-oriented programming language

(OOPL) is usually simpler than designing the same program using a more conven-

tional procedural language. This is because 00 design more closely mirrors the real

world entities being modeled. Also, the use of encapsulation (data hiding) and inher-

itance make classes more reusable. As an example, a program written in C in a win-

dowing environment that prints a "Hello World" window takes approximately 42

lines of code. The same program written in Actor (an object-oriented programming

environment) takes just two lines of code. This is because there is a Window class

declared in the class hierarchy of Actor and the programmer only has to create an

instance of this class to make the window. [Wu90]

4



The development of 00 programs is dependent upon the careful design of the

classes and their relationships to one another. If the classes accurately reflect the sys-

tem being designed and if the external interfaces are designed properly, creating a

working program is fairly simple. This is the reason that the design of a program is

very closely tied to the actual implementation. In Ada, for example, the actual struc-

ture of the program may not reflect the structure of the system due to language con-

straints [Mica88]. Ada has no mechanism to support inheritance, so the design of a

class would most likely include some variables and procedures that have already

been defined elsewhere. Ada does takes advantage of libraries of different types of

functions such as math libraries, etc.; however, the programmer can only use the

functions provided in the library 'as is'. If there is some functionality provided by a

certain library function, but it does not work exactly the way the programmer wants,

or if he would like to add functionality to the existing function, then the programmer

must make a copy of the function to be used in his program. This is because there is

no way to use an Ada library function as a foundation to be built upon.

The following sections present a more detailed introduction to some of the spe-

cific areas of object-oriented programming. The main areas to be discussed are

classes and objects, inheritance, encapsulation, reusability, and polymorphism.

1. Classes and Objects

A class is defined as "a set of objects that share a common structure and a

common behavior" [Booc91; page 93]. An object is a set of self-contained variables

with a set of procedures which operate on them [Nels9Oa]. They do not exist in the

text of the program, but rather in the memory of the computer while the program is

being executed [Meye88]. Another way to view a class is as a framework or a

blueprint that describes all instances. It is also helpful to visualize a class as a static

entity, and an object as a dynamic entity [Meye88]. That is, once a class is defined

5



it does not change. In contrast, objects are constantly being created, modified, and

deleted during the program's execution. For example, if the structure of an object is

defined as having attributes labeled X, Y, and Z, then the values stored in X, Y, and

Z can change many times during the life of the object.

It is helpful to think of a class as the general description of an object. For

example, one could declare a class called Person which describes all the common

features of people in general. A specific Person, such as John Smith, is an object

(instance) of this class. The class description serves as an abstract description of

related objects and how they interact with each other and the outside world. All

objects of class Person share the same structure (attributes) and behavior (things

they can do). It is this basic structure and behavior declaration that makes up the

class definition. The value of a certain attribute of a Person may be different for

every instance, but all instances have the same type of attributes.

The description of a class is broken down into attributes and methods

(behaviors). Continuing with the Person example, some attributes of this class

might be weight, colorhair, birthday, etc. (see Figure 2.11). Attributes of a class can

be further broken down into two distinct groups: class attributes and instance

attributes.

Class: Person

Superclass: none
Class attributes: total-population
Instance attributes: weight, colorhair, birthday
Methods: beborn, do-work

Figure 2.1 Example Class Definition

1. This figure is based upon the language independent class definition as presented in [Nels9Oa].

6



Class attributes not only share their names with all the instances of the

class, but the value of the class attribute is also shared by all instances [Nels9Oa].

For example, in class Person, there might be a class attribute total-population. As

each new Person is created, total-population would be incremented, and as an

instance is destroyed (dies) total_population would be decremented. However, the

value is the same for all instances of the class. In other words, if one instance of

Person, say John Doe, requires the total-population for some computation, the

value is locally accessible to him and any modification to the value will be

immediately visible to all other instances of the class.

Instance attributes share only their names with other instances of the class;

the values stored in the instance attributes can (and usually do) differ from one

instance to another. The attributes weight, color-hair, and birthday in Figure 2.1 are

examples of instance attributes. While each instance has this set of attributes, the

values stored vary from one instance to the next.

Methods describe actions for classes. They are accessed by passing

messages to an object. The concept of message passing comes from Smalltalk

where the means for causing an object to perform some function (method) is through

message passing [Booc9l, Nels9Oa]. Methods defined for the class Person in Figure

2.1 include beborn (make a new instance of the class) and dowork. In some

languages the only way to access an object's attributes is through the object's

methods. This allows the creator of a class to modify its internal structure without

the outside users of the class being aware of the change. This idea is called

encapsulation, and is discussed in Section 3.

The external interface of an object is the way the object appears to the

users of the class. In C++ terminology, the external interface of an object is the set

7



of public2 attributes and public methods, as well as the specifications for these

methods. The external interface of an object also describes the methods available for

the object and how the messages for the object should be appear. Protected methods

are available to a class and its descendants, and although they are not part of the end-

user's view of a class, they are visible to descendants of a class and the end-user

must be aware of these methods and attributes.

One particularly interesting type of object is the composite object

(sometimes referred to as an aggregate object). A composite object is an object that

is made up of other objects. In other words some (or all) of the attributes of an object

are themselves objects. These objects that make up the composite object can be

either sub-objects, or dependent objects, the distinction being dependent objects are

actually objects, and sub-objects are pointers to objects. [Nels9Oa]

2. Inheritance

Inheritance is what separates OOPLs from procedural languages such as

Ada or Pascal [Mica88]. Inheritance can be defined as a mechanism that allows for

code sharing. It allows new classes to be defined based on an existing class or classes

[Nels9Oa, SB86]. The existing class is referred to as the superclass, while the new

class is referred to as a subclass of the existing class. In Figure 2.2, class A is the

superclass of class B, and class B is a subclass of class A. Class B inherits all of the

attributes and methods of class A (including any inherited by A); it may also define

new attributes and methods to augment the inherited ones.

There are two types of inheritance, single inheritance and multiple

inheritance. Single inheritance means that a class can have 'at most' one superclass

2. Public methods/attributes are those methods/attributes that are available to all methods and users
of the class.

8



Class A Attributes: a

Methods: X

Class B Aius

Figure 2.2 Superclass/Subclass Example

and is generally referred to as simply 'inheritance'. Multipk inheritance (MI)

means that a class can have many superclasses.

With inheritance, unfortunately, comes several potential problems. The

biggest problem is that of naming conflicts, which is when a class defines a method

or attribute using the same name as an inherited one, either by choice, or by accident

[Nels88]. Generally if this happens the inherited method/attribute is inaccessible in

the new class. The problem becomes much more severe in languages that support

multiple inheritance. For example, if there is a method X in class A and a method X

in class B, and class C inherits from both A and B (see Figure 2.3), what happens to

method X is very much language dependent [Mica88, Nels90a,NMO91]. A similar

situation exists with the attribute q.

One possible solution is to have the compiler check for name conflicts and

flag them as errors, as in the language Eiffel [Meye88]. Eiffel does not permit a class

to inherit a method with the same name from two or more parent classes. Any name

conflicts must be resolved through the use of the redefine or rename commands

when declaring the subclass [Meye88]. However, this requires the programmer to

have some knowledge of the inner workings of the classes in the inheritance

hierarchy, which violates the concept of encapsulation. An alternative notion to this

is the super construct in languages such as Extended Smalltalk or CommonObjects

9



Clan: A Attributes: q Cm: B Attributes: r, q

Methods: X, Y Methods: X

C60: C Attributes: r &?

Methods: Y, &?

Figure 2.3 Multiple Inheritance Problem

[Mica88]. This allows programmers to formally declare which superclass to inherit

a method from [Mica88].

A different approach is to create a precedence list to determine which class

to inherit from. Aprecedence list is a list that is established, either by the language

or by the programmer to determine which classes are 'senior' to other classes. This

precedence list can be generated in a number of ways. One way is through a depth-

first traversal of the inheritance subgraph starting with the class in question. This is

the approach taken in the languages Flavors and Loops. Another way to create the

precedence graph is by using a programmer-defined precedence algorithm that

resides in the metaclass of the class being defined. This is the approach taken in

languages such as CommonLoops. [Mica88]

Inheritance allows the programmer to define objects as they relate to other

objects in their world view. Consider the example of an employee database. One of

the classes that needs to be defined is Employee. This class could have attributes for

name, age, sex, birthday, and address (see Figure 2.4). If the company has salaried

and hourly employees, you could create separate classes for these. Salaried would

have the attributes salary, years.of-service, jobtitle. Hourly would have the

10



attributes hourlyywage, position. Since both Hourly and Salaried are kinds of

Employees, they both inherit from the class Employee.

Employee Attributes: name, age,
sex, birthday, address

Methods:
add.new.employee

Hourly Attributes: hourly-wage, Salaried Attributes: salary,
position years_ofservice,Methods: job-title

hethods:

Figure 2.4 Employee Example

Objects of type Hourly, for example, would have the inherited attributes

name, age, sex, birthday, and address, along with the locally defined hourly-wage

and position attributes. Objects of type Salaried would have the same inherited

attributes as Hourly, along with the locally defined attributes salary,

years ofrservice, and job-title. Thus, the subclasses of Employee have access to

the attributes defined in the superclass as well as those in their own local definition

(see Figure 2.5).

Along with attributes, methods are also inherited by subclasses. An

example might be addnewemployee, which could be defined in the class

Employee. If the programmer wants to create a method for making a new hourly

employee, he writes the method add-hourly-..employee in the class Hourly. This

method could first call add_new.employee which would return an instance of class

Employee, then it would add the specific values for an hourly employee. The call to

11



Class Hourly Class Salaried

Attributes (inherited): name, Attributes (inherited): name,
age, sex, birthday, address age, sex, birthday, address

Attributes (local): hourlywage, Attributes (local): salary,
position years.ofiservice, job-title

Methods (inherited): Methods (inherited):
add_new-employee addnewemployee

Methods (local): none Methods (local): none

Figure 2.5 Hourly and Salaried Attributes and Methods

add_newemployee would look inside the class Hourly for a method called

add_ewemployee, since it does not exist there it would look to the superclass for

a method with that name. Since it is there it would execute; if not found there, then

the entire inheritance hierarchy would be searched until the method is found or the

top level of the class hierarchy is reached, which would result in an error condition.

3. Encapsulation

Encapsulation can be defined as "the process of hiding all of the details of

an object that do not contribute to its essential characteristics" [Booc9l; page 46]. It

is also referred to as data hiding. In OOP, the user of a class should only need to

know how to call a method and what methods are available to manipulate an object.

The user does not need to know the internal details about how a specific method

works, or what attributes the object has. All the user needs to be aware of is what

message is passed to an object, and what will be returned by the object.

Encapsulation is an important concept related to object-oriented

programming and modularity of code. If the details of objects are hidden (i.e., they

are encapsulated), then program developers can specify what they want and how it

should interface; objects can then be built to specification without requiring

12



information about the exact structure of the object or how its methods are

implemented. It also allows for the code to be improved/modified without affecting

how end users access the object.

One language that supports the idea of encapsulation is C++. The way to

fully encapsulate attributes or methods in C++ is by declaring them as private,

which means that they are only visible to methods of that class. Thus the

implementation details are known only to the class that declared them. The external

interface of the class could then be declared as public (visible to everyone).

Additionally, C++ offers another alternative: declaring attributes/methods as

protected, which means that they are visible only to the class and its descendants.

By limiting the visibility of methods and attributes, encapsulation can be preserved.

Most OOPLs provide some means of encapsulation; however, in many cases it is up

to the programmer whether or not to utilize encapsulation.

4. Reusability

Reusability refers to "the ability of a system to be reused, in whole or in

part, for the construction of new systems" [Mica88, page 13]. This is a very

important issue in OOP, as one of the goals of OOP is to reduce the costs associated

with software development and maintenance. If programmers develop commonly

used structures such as hash tables, sorting algorithms, etc., and then test them

thoroughly to prove their correctness, why should they be re-written each time they

are required [Mica88]? This should not be necessary if the code exists and can be

reused without modification 3. If the code cannot be reused as is, then perhaps it can

be used as a superclass, and the subclass that inherits from it can make modifications

or additions to the methods/attributes that are inherited.

3. The idea of retesting methods is also addressed in [PK90]. It is pointed out that even though a
method may be thoroughly tested in its original context, retesting is required to meet the standards
of adequate testing in the new context in which it appears.

13



Inheritance then becomes a key factor in determining how reusable a

system is, because without inheritance the designers of software must either modify

an existing class to do what is desired, or copy it and then modify the copy. Both of

these alternatives are, however, unacceptable. The problem with modifying the

original is the loss of abstraction. The original class may become unrecognizable as

each programmer makes his changes. It may also become unusable to some clients

because the details that were modified were ones that they relied upon. The problem

with making a copy of the original class and then modifying it is the same type of

problem associated with maintaining multiple copies of data. Each time the original

class needs to be updated for bug fixes or enhancements, all copies of the class also

need to be updated. Inheritance allows the original implementation of the class to

stand as is, and clients can then use it or inherit from it and modify attributes or

methods as required.

Of course, with every benefit there are also drawbacks or side-effects

associated with it. The side-effect associated with inheritance as it relates to

reusability, is that if a class is properly encapsulated, then the subclass cannot

modify the existing attributes or methods without violating that encapsulation. If, on

the other hand, the subclass is created to simply take advantage of all (or some)

features of the superclass and add some new functionality, then there is no problem

with encapsulation.

5. Polymorphism

The ability to have more than one class with methods of the same name but

with different implementations is known as polymorphism [Nels90a].

"Polymorphism is an important feature of all object-oriented programming

languages that allows the definition of flexible software elements amenable to

extension and reuse" [Mica88, page 31]. Examples of polymorphism (also called

14



operator overloading) that are common in most conventional languages are the

arithmetic operators +,-,*, and /. If you declare two integers and two real numbers,

and then perform addition on each pair, you have used the symbol '+' to perform

two different functions; one is integer addition and the other is floating point

addition.

Simplepolymorphism refers to the ability of different classes to implement

the same operation, differently. Multiple polymorphism is when a single class can

have multiple operations with the same name, but possibly a different parameter list.

When a message is sent to a class with multiple methods with the same name, the

method used is determined by the parameters passed in the message. [Nels9Oa]

Polymorphism allows programmers to add multiple methods to classes that

share some commonality and therefore use the same name to denote the specific

function. This is preferred over creating an artificial name to distinguish two or more

methods that are essentially the same with the exception of their parameters, or the

receivers of the message. An excellent example is a print method for a screen object

and a printer object. If the receiver of the print message is a screen object the

information will be displayed upon the screen, if it is a printer object the information

to be printed will be sent to the printer. There is no distinction between the messages

to perform a screen print and printer print, however the result of the method is very

different.

B. DATABASE MANAGEMENT SYSTEMS

Of the three major topics covered in this chapter, databases and database tech-

nology is the oldest. It is also a major part of the foundation upon which this thesis

is built. This section serves as an overview of database topics and the distinctions

between the different types of database technology available in the marketplace to-

day. It is not intended to be a tutorial for novices to learn database systems. The read-

15



er may refer to "Fundamentals of Database Systems" by Ramez Elmasri and Sham-

kant B. Navathe [ER89] for a more detailed introduction to this subject.

1. Basic Terminology

A database is a logical collection of related data that has some intrinsic

meaning [EN89]. It can also be defined as data that is permanently 4 stored in a

computer [Nels9Ob]. These definitions lead to the conclusion that a random

collection of data is not a database, which is an accurate assessment. A database is

also said to represent a subset of the real world, sometimes called a miniworld

[EN89].

The tool used to build, store, and manipulate the data stored in a database

is the database management system (DBMS). A DBMS can be thought of as a

general-purpose software system [EN89] to perform the previously mentioned

tasks. Each type of DBMS (hierarchical, network, relational, and object-oriented) 5

has its own particular way to define the data being stored; this is sometimes referred

to as its data-definition language (DDL). The way a DBMS stores and retrieves data

from the storage medium (disks, tapes, etc.) is through its storage definition

language and the way a database user sees the data presented is controlled by the

view definition language. Some DBMSs have these languages separated into

distinct languages while others have a single all-purpose database programming

language.

Another important concept in database technology is the data model. A data

model is a way to abstract the data being stored in a database to provide a clearer

visualization of the data than computer storage concepts provide. That is, data

4. That is, the data will exist after normal termination of the program. The data is "permanent" until
the user issues a delete command to remove the data from the database.

5. Only relational and object-oriented approaches are discussed in detail in this thesis.

16



models represent the data being stored in a form that is more meaningful to the user

than the actual form the data takes on the storage medium. For example, consider a

data model that represents the data in a tabular form. This would be clearer to most

people than a B-Tree data structure that might actually hold the data.

Many different types of data models exist to represent the different types of

databases. One model that crosses the boundaries of different database types is the

entity-relaionship (ER) model [EN89]. This model can be used to design a

relational database as easily as a hierarchical, network, or object-oriented database.

The basic elements of the ER model are entities, attributes, and the relationships

between entities. An entity is defined as a "thing" in the real world, either tangible

(e.g., an employee) or intangible (e.g., a project) and each entity has attributes that

describe it. For example, an employee object might have attributes representing

name, dept, social security number, etc. A relationship between two entities means

that they are linked by some attribute in each entity. Relationships can represent one-

to-one, one-to-many, or many-to-many associations between relations. An example

is a company database that maintains employee entities and project entities. A

typical relationship might be a 'works-on' relationship where employees work-on a

project. An attribute of an employee entity might be project number and an

attribute of project might be number. The works-on relationship would consist of

tuples representing every employee/project pair. Quite often the relationship is

stored in the database as a table as well because they have attributes associated with

instances of the relationship, or because the relationship is one-to-many, or many-

to-many.

2. Relational Databases

The relational data model was introduced in 1970 by Dr. E. F. Codd

[Codd70]. Since its introduction there has been a great deal of interest in, and

17



development of, relational database systems. This can be attributed to the ease of use

associated with it as well as its firm mathematical foundation. It is also a more

abstract way to present a database than hierarchical or network databases, which are

closely tied to the physical data structures.

A relational database is, as the name implies, a collection of relations.

Relations can be thought of quite simply as tables containing entries for each entity

being stored [Alag86]. These tables consist of many instances (or rows) of tuples,

and a tuple (often called a record) is a collection of related data that describes one

entity of an ER diagram, or one object being stored. The columns of a relation

represent the attributes associated with an entity in the ER diagram.

The key to understanding relational databases lies in understanding set

theory from mathematics. The concept of storing data in tables is fairly easy for the

average individual to comprehend. Figure 2.66 is an example of a very simple

relational database displayed in tabular form. One would have to agree that there is

little difficulty in determining what is being stored in this database. However,

understanding how to obtain specific records or values from the database requires

that the user understand the relational algebra associated with performing queries. A

query, as the name implies, is how a database is interrogated or probed for

information. Queries are performed to retrieve specific information from the

database. For example, to obtain a list of employee names whose SupSSN is equal

to 222333444 requires two select operations and a project operation. These

relational operations, plus union, set difference, and Cartesian product, are the

subject of the following section.

6. The name of the primary key is underlined.

18



Employee

Name SSN Dept

Smith 123456789 Sales
Borg 222333444 Mktg

Jones 256789043 Sales

Williams 456782910 Sales
Edwards 598320982 Mktg

Department

dept-name Location SupSSN

Mktg New York 222333444
Sales Los Angeles 256789043

Figure 2.6 Simple Relational Database

a. Relational Algebra

One of the most commonly used relational operations is the select

operation. This operation is used to retrieve entire tuples from a relation. The select

operation gets the tuples based on a selection condition. The selection condition is

a boolean expression made up of one or more expressions of the following form:

<attribute name> <comparison operator> <constant value>; or

<attribute name> <comparison operator> <attribute name>

where <attribute name> represents an attribute name in the relation being operated

on, <comparison operator> is one of the operations in the set (<,> = < >, #), and

<constant value> represents a constant value. There can be any number of these

clauses joined by the Boolean operators AND, OR, or NOT. [EN89]

The project operation is similar to the select operation except that

where the select operation retrieves specific rows from a relation, the project

operation retrieves entire columns from a relation. Also, instead of a selection

19



condition to determine which tuples to chose, the project operation simply lists the

attribute names or the columns to be retrieved. [EN89]

The next three relational operations can be classified as Set Theoretic

Operations. That is, they are operations that are performed on entire sets (relations).

The basis and proof of correctness of these operations is directly related to

mathematical set theory proofs and concepts. [EN89]

The union operation creates, from two union compatible relations, a

new relation that contains every tuple from both of the original relations with

duplicate tuples removed, just like the union of two sets in mathematics. Union

compatible means that both relations have the same number of attributes and the

attributes are of the same domain (e.g., the attribute pairs are both from the set of 9

digit integers). Figure 2.7 shows two union compatible relations, the Employee and

Supervisor relations, and Figure 2.8 is an example of the union of those relations.

Employee Supervisor

EName ESSN SName SSSN
Smith 123456789 Borg 222333444

Borg 222333444 Stone 567811543

Jones 256789043

Williams 456782910

Edwards 598320982

Figure 2.7 Two Union Compatible Relations

The set difference operation is defined as the relation containing all the

tuples in the first relation but not in the second, as in Figure 2.9. It is denoted by a

minus sign ("-") such as Employee - Supervisor.

20



EName ESSN

Smith 123456789
Borg 222333444

Jones 256789043

Williams 456782910

Stone 567811543

Edwards 598320982

Figure 2.8 Result of Employee Union Supervisors

EName ESSN
Smith 123456789

Jones 256789043

Williams 456782910

Edwards 598320982

Figure 2.9 Result of Employee - Supervisor

The Cartesian product operation combines tuples from each relation in

such a way that each tuple of the first relation has each instance of a tuple from the

second relation appended to it. The resulting relation has as many attributes

(columns) as both relations combined and the number of tuples is equal to the

number of tuples in the first relation multiplied by the number of tuples in the second

relation. The Cartesian product of the relations Employee and Department is shown

in Figure 2.10.

As can be seen in Figure 2.10, there is quite a bit of redundancy in the

resulting tuples as each tuple in the first relation is repeated once for each tuple in

the second relation and vice versa. Therefore, the result of a Cartesian product is

21



Name SSN Dept dept-name Location SupSSN

Smith 123456789 Sales Mktg New York 222333444
Smith 123456789 Sales Sales Los Angeles 256789043

Borg 222333444 Mktg Mktg New York 222333444
Borg 222333444 Mktg Sales Los Angeles 256789043

Jones 256789043 Sales Mktg New York 222333444
Jones 256789043 Sales Sales Los Angeles 256789043

Williams 456782910 Sales Mktg New York 222333444
Williams 456782910 Sales Sales Los Angeles 256789043

Edwards 598320982 Mktg Mktg New York 222333444

Edwards 598320982 Mktg Sales Los Angeles 256789043

Figure 2.10 Result of Cartesian Product of Employee with Department

usually used only for a specific purpose and then discarded due to this excessive

redundancy.

The five relational operations just covered have been demonstrated to

be a complete set of relational algebra operations [EN89]. That is, it has been shown

that any other relational operation can be constructed from some combination of

these five basic operations. Thus any relational database system can be considered

complete if these five operations are included7 .

b. Limitations of Relational Databases

Probably the most obvious and important limitation of conventional

databases (i.e., relational as well as hierarchical and network) is the lack of support

for large unstructured data such as sounds or pictures. As Kim points out in [Kim91 ],

conventional databases have served us well in the application domain they were

7. Of course, efficiency of operations is another issue. For instance, it may be much more efficient
to implement other operations, such as intersection, directly rather than in terms of these five basic
operations. [Nels88]

22



originally developed for, namely business and payroll type applications. However,

many of today's applications, including CASE tools and CAD programs, require a

more dynamic storage and retrieval system such as the object-oriented data model.

Additionally, relational databases tend to loose the structure of the data

being modeled as it is normalized. To efficiently model data in the relational model

it must be normalized, or flattened out to remove redundancies and dependencies.

In doing so the original structure of the data is often lost. This causes the data

abstraction to be lost and removes much of the original meaning of the entity being

stored.

3. Object-Oriented Databases

In recent years there have been quite a few object-oriented database

management systems (OODBMS) developed. This section briefly describes some

features common in most OODBMS as well as discussing various problems and

limitations associated with them. Two example OODBMSs to be discussed herein

are Gemstone [Serv89a, Serv89b] and Vbase [Onto88] (the predecessor of Ontos

[Onto9O]).

What differentiates an OOPL from an OODBMS is persistence of objects.

An OODBMS allows the user to create and manipulate objects (as does an OOPL),

but it also provides for permanent storage of the object so it can be used again in

another session. Most OOPLs do not have the facilities to save objects from one

session to another 8. Aside from this difference most OODBMSs are very similar to

OOPLs.

OODBMSs allow users to declare classes and create instances of these

classes just as OOPLs do. However, when the user requires an object that has been

8. It should be noted that Prograph is one of the few OOPLs that does support object persistence
without requiring a database file to hold the objects. This feature will not be used for the purposes
of this thesis, a separate database file will be created instead.

23



written to secondary storage, the OODBMS retrieves the object from the storage

medium and puts it into the correct form so that the user can manipulate it. An OOPL

can only retrieve objects stored in memory during a single session. The OODBMS

handles the reading and writing of the objects to and from the storage medium in a

way that is transparent to the user, just like conventional DBMSs. However,

OODBMSs also maintain the methods associated with the class of the object being

stored so they retain their ability to function and perform operations. Conventional

databases store only data values and therefore they can only be used by a separate

program; objects stored in an OODBMS, on the other hand, are able to function

when they are retrieved from the database.

All OODBMSs surveyed have a database programming language

associated with them as well as a class library. There are as many languages as there

are systems. Some languages are variants of Smalltalk-80 (e.g., Opal, the Gemstone

data definition and manipulation language), others are variants of C or CLU (e.g.,

COP, the data manipulation language of Vbase). There are also many different class

libraries which contain class definitions for such classes as Collection, Set,

Dictionary, Association, and others. These classes provide a means to organize the

objects being stored in the database. Without these classes an OODBMS would not

be very usable, it would merely store all objects in one location without a logical

connection and, as discussed earlier, this defies the definition of a database.

When creating objects, the user will generally chose to store each object in

a collection of some kind based upon the type of data/database being modeled. If,

for example, the user wishes to model a relation, an instance (or descendant) of Set

might be created, because relations are defined as sets of related tuples. By storing

objects within a descendant of Collection the data can be thought of.as one logical

unit and manipulated as such. Depending upon the subclass of collection being used,

the data being stored can also inherit qualities that provide easier (or faster) access

24



to each object. For example, if a collection of objects is related in such a way that

the objects are all different and each has a key/value associated with it, an instance

of Dictionary might be created to hold the objects. [FN92a]

OODBMSs also provide many of the features expected in conventional

database systems, such as access control and concurrency control. They generally

provide methods for locking individual records/objects during updates, just like

conventional databases. Since the OODBMSs surveyed are designed to run on

multi-processing architectures, concurrency control is built into the database kernel

or monitor running on the host computer.

It has been said that relational databases are value-based whereas object-

oriented databases are identity-based [ZM90]. This is a result of the previously

discussed idea that object-oriented databases capture the function as well as the

value of each object.

4. Relational/Object-Oriented Databases

Although there has been relatively little work done in this area of database

research, it is probably one of the more important areas. This is because there exists

a very large base of relational database applications, and SQL-based languages have

become the defacto industry standard [Alag86]. While most agree that object-

oriented databases are the way of the future, many hours and dollars have been

invested in relational systems and people are generally unwilling to forsake

relational databases in favor of a new model. What the relational/object-oriented

model promises is a way to have all the benefits of the newer 00 approach without

abandoning the "tried and true" relational approach.

It has already been established that a major failing of conventional

relational databases is the inability to represent complex data types. This is very

important if technology is to continue to move forward. A relational/object-oriented

25



database system would take the best of both types of database technology and

combine them into a single more powerful database tool.

It has been proposed that the capability to perform relational operations

could be added to any object-oriented system [Nels88, NMO90]. A prototype

system, called a relational object-oriented database management system (ROOMS),

provides an interface that could be used as a stand alone database system or added

to any existing OODBMS. The system is designed around a Relation class, a

Record class, and a Database class. The workhorse is the Relation class. It includes

of methods for each of the five basic relational algebra operations as well as methods

to display a relation and add/delete records from the relation. This approach will be

discussed in more detail in the next chapter.

C. PROGRAPH

Prograph [TGS88a, TGS88b, TGS91] is billed as a "Very high-level pictorial

object-oriented programming environment" for the Apple Macintosh. This means

that the level of abstraction from machine language is about as distant as one can get

(at this time, anyway). For example, programs written in assembly language are di-

rectly tied to a specific processor, and the actual instructions have a nearly one-to-

one mapping with the machine instructions for that specific processor. In contrast,

Prograph allows the programmer to design and implement programs as a number of

objects which interact with one another to produce desired results. This is common

to all OOPLs; however, Prograph allows the programmer's mental image to be

transferred to the computer in an iconic fashion, thereby reducing loss in translation

to textual form. To aid the programmer in seeing the application in terms of classes,

methods, and attributes, Prograph makes use of both icons and the Macintosh oper-

ating system's windowing environment. Programs are built as dataflow diagrams

representing the data that flows through the program. This is in contrast to traditional

26



programming languages which treat data as something stored away in memory

somewhere, and only handled as necessary.

Prograph is a hybrid OOP language. This is because Prograph supports primi-

tive language types such as character, integer, boolean, etc. A pure OOP language

has no primitive language types; everything is an object [Booc9l, Mica88].

Prograph, like C++, has primitive data types as part of the language that are not in

the inheritance hierarchy. Another feature that makes Prograph a hybrid language is

the concept of universal methods. These are methods that do not belong to any par-

ticular class, but can be called from any method in any class [TGS88b]. Support for

universal methods frees the programmer from having to create specialized classes

somewhere in the inheritance hierarchy to perform one specific task.

1. The Language

Since Prograph is a dataflow language, data is active, not static. That is, data

moves through the program rather than sitting in a memory location waiting to be

processed as in the von Neumann model. In a dataflow language, as soon as data is

available to each input of an instruction, it can execute. This represents a key

difference between dataflow languages and sequential text-based languages, in that

the execution of a von Neumann machine is based on the process of fetching an

instruction, executing it, and then fetching the next instruction, and so on. This

provides a single thread of control from instruction to instruction. In contrast, the

dataflow machine's instruction cycle detects when all required inputs are active (i.e.,

have data available), fetches the instruction, executes it, and generates the data to be

output by the instruction. Since there are many possible flows of control in a

Prograph program, it supports concurrent processing [TGS88a]. Obviously, since

the programs used in this thesis are intended to be run on a uniprocessor system (the

Apple Macintosh), true concurrency is not possible.

27



Some additional Prograph terminology is necessary to understand the

examples used herein: terminals, roots, and primitives. Terminals are the input to

methods and primitives, and roots are the outputs. Primitives are the procedures (or

functions) that are built into the language.

An example of a primitive is get-file. This primitive accepts as input (via its

single terminal) a list of file types to be displayed in a standard Macintosh open file

dialog box (see Figure 2.11). The outputs of this operation are: the name of the file

selected from the scrolling list, the volume identifier, and the file type. This is just

one example of the power of primitives. They encapsulate much of the detail

involved in creating certain displays, as well as performing such functions as

arithmetic, list processing, and so on.

Itq Prograph V * Filippi HD

D fppBuilder
0 Classes f Desktop
<Q Com piler 2.02 .........................................
D Compiler Prefs

CD CopyPiHBits I Cancel_)
C3 Examples 1
L EHamples21 en

Figure 2.11 Result of get-file primitive

Prograph is one of the few OOPLs that supports persistent objects.

Persistents are defined as data or objects that exists from one execution of a program

to another. They are created and displayed in a Persistents window that is separate

28



from the Classes window and the Universal window. Persistents are created in the

same way as a class or method, and can be double-clicked to display their values.

Persistents allow the user to manipulate objects and store them within the program

so that they can be used later during the execution of the program, or recalled during

another execution of the program.

a. Classes

Prograph classes are represented by hexagonal icons displayed in the

Classes window (see Figure 2.129). Within the window are the class hierarchies for

the program. There can be as many separate hierarchies as the application requires.

This is different from some other languages, such as Smalltalk, which allow only a

single class hierarchy. In Figure 2.12 there are three distinct hierarchies. Two of

them contain only one class each and the third has as its root the class Animal. The

lines between classes in the Animals hierarchy represent the inheritance links

between various classes.

The class icon itself represents the component parts of a class, its

attributes, and its methods. The left-half of the icon represents the attributes of the

class, the right-half represents the methods. Double-clicking on the left half opens

the attributes window for the particular class. Similarly, double-clicking the right

half opens the methods window for the class.

To create a new class the programmer points to white space in the

Classes window and clicks the mouse button. Once the icon appears the programmer

gives the class a name and defines its attributes and methods. If the name selected

by the programmer already exists, then the system will not accept it, warning the

user that the chosen name is already in use.

9. This figure as well as those that follow in this section, are taken from an example in Part II, Chap-
ter Six of the Prograph Tutorials [TGS88a].

29



Classes

THE B ARNY ARD
S IHUL AT ION
CLASSES

DiaryEntry Bird Dog Cat ow Horse

Chicken Duck Guernsey Black Angus

Figure 2.12 Barnyard Simulator Classes Window

b. Attributes

Attributes are displayed in the attributes window. Class attributes are

represented by the hexagon shaped icons, and instance attributes are represented by

inverted triangles. The attributes window is divided into two parts by a horizontal

line. Above the line are class attributes, below it are instance attributes. The attribute

windows for the classes Animal and Guernsey are shown in Figure 2.13. The class

Animal has no class attributes, only instance attributes which are defined locally.

We know this because the icons for the attributes do not contain a downward

pointing arrow. In contrast, the attribute window for Guernsey has one class

attribute, herdMembers which appears above the horizontal line, and instance

attributes name, age, and food, below the line. The three instance attributes are all

30



V Animal V Guernsey
0 ( (Guernsey...

V rrs
name

Vname

age
"generic cho...

V age

food "grass"

food

Figure 2.13 Sample Attribute Windows

inherited via the superclass Cow1 ° . This is shown by the downward arrow in each

instance attribute icon (inverted triangle icon). If there were any attributes particular

to only a Guernsey, they would appear below the inherited attributes in the window.

The class attribute is also inherited from Cow so it has the downward arrow in the

icon (the hexagonal icon).

Attributes can be assigned inimal values by double-clicking on the icon

and changing the value in the attribute editor. Attributes can also be more than

simple data types, they can be instances of other classes; this is how you represent a

composite object in Prograph.

10. Any attributes inherited by Cow are also passed on to its subclasses.

31



c. Methods

Methods are represented by an icon that contains a mini-dataflow

diagram (see Figure 2.14). The hexagon shaped icon labeled <<> is a special kind

of method called an initialization method or instance generator. This instance

generator method is invoked whenever an instance of that class is created. It allows

you to tailor creations of an instance. This method also overshadows the instance

primitive (overshadowing is the term used in Prograph for redefining inherited

attributes/methods).

i Animal

move talk eat sleep birthday ()

Figure 2.14 Class methods window

When a method is selected and opened (by double-clicking the icon), a

case window such as the one in Figure 2.15 is opened. This is where the dataflow

aspect of the Prograph language is most apparent. In this example, there are three

basic types of operators. The operators with the concave left side labeled food,

name, and what happened are Get operators. These retrieve the values of the

attributes that match their label. Operators with a convex left-side (such as the

bottom occurrence of what happened) are Set operators. These set the values of the

attributes that match their label. The other types of operators shown are primitives.

For instance, the two labeled join catenate two or more strings to produce a single

string. The long narrow bars at the top and bottom of the case window are the input

32



bar and the output bar. These are where the data flowing in and out of the method

are attached. In this example, there are two inputs (an instance of the class Animal,

and the current eventRecord) to the method, but no outputs.

Animal/eat 1:1

animal current

instance eventRecord

ood -h a t _h ai pen-ed

ame

" eats some ...

Figure 2.15 Case Window for Animal/eat

d. Message Passing

Message passing in Prograph is accomplished by creating a simple

operation with the name of the method being called. Once the method has been

named and the Enter key (Return key) has been pressed, Prograph assigns the

operation the correct arity based upon the arity of the method called. Arity refers to

the correct number of terminals and roots for the operation. Figure 2.16 shows the

33



five ways to reference a method. They are, respectively: universal reference, explicit

reference, data-determined, context-determined reference, and super.

1 2 3 4 5

Figure 2.16 Method References

A universal reference is when the method being called resembles

Example I of Figure 2.16; that is, there is no slash ("P") preceding the name of the

method. The method to be executed is located in the Universal methods window.

Universal methods are similar to global functions in other programming languages,

because they have a global scope. In an object-oriented language such as C++ these

types of functions could be stored in a Global dictionary so they could be used by

any method that needs them.

An explicit reference is always in the form ClassName/MethodName

(see Example 2 of Figure 2.16). If the method is not found in the specified class, its

ancestors are examined for the appropriate method name, but the search begins with

the class named before the slash. These types of methods are not directly related to

any object-oriented concept. They are provided mainly as a way of supporting

traditional programming concepts.

A data-determined reference is similar to the 00 concept of message

passing and is denoted by a method name preceded by a slash (see Example 3 of

Figure 2.16). The method called is based upon the instance of the data arriving on

the left-most terminal of the operation. In other words, the class to search for the

34



named method is the same class as the instance arriving on the left-most terminal.

Data-determined references are examples of single polymorphism.

A context-determined reference is akin to the 00 concept of sending

a message to one's self and is denoted by the method name preceded by two slashes

(see Example 4 of Figure 2.16). The class to be examined for the named method is

the same class the calling operation exists in. For example, a class Cow might

contain a method new_cow that creates a new instance of the class Cow and names

the new instance by calling the method name in class Cow. The operation in

newcow that names the new cow is labelled /name, this tells Prograph to look for

name within this particular class.

The fifth type of operation is called super. It is a context-determined

reference that searches for the appropriate method, not in the class it is called from,

but its superclass. A super operation is denoted by an up-arrow in the right side of

the operation icon (see Example 5 of Figure 2.16). The super operations allow a

method to use a parent's method and then add its own functionality to the parent's

method.

e. Control Structures

Even though Prograph is a dataflow language, flow control can be

imposed and is in fact often necessary to obtain desired results. The primary way to

affect the program flow is through the use of controls. Controls are attached to

certain operations and are activated based upon success or failure of the operation.

The default setting for all operations is to activate on success. This default is

changed by selecting the operation desired and selecting the appropriate control

from the Controls menu.

Controls are represented by a small square icon attached to the right

side of an operation. Within the square is a check mark ('I), indicating activate on

35



success, or an X, indicating activate on failure. There are also other icons within the

small square indicating what action to take if control is activated (e.g., go to next

case, continue, terminate, finish, or fail). Probably the most common control is the
'on failure go to next case'. This allows the programmer to execute different

operations within a single method based upon success or failure of a test. This could

be used as an if-then-else structure or a case structure. An example of an if-then-else

structure is shown in Figure 2.17. The < operation has an 'on success go to' (4)

control attached to it so if the age of the cow is <3, control goes to the next case (i.e.,

Cow/name 2:2) and "Lil"' is appended to the front of the cow's name. If the age < 3

operation fails, control remains in the current case and only the name of a cow is

output. The case windows are distinguishable by their title bars. Each has the same

method name, but they also have 1:2 or 2:2 to distinguish the first case window from

the second. A comparable C code fragment is shown in Figure 2.18.

-I Y1 Cow/name 1:2---I!IM- --

a Cow or its 3 Cow/name 2:2-IKlI 'I-M-211
subclass instance "Q

3 a Cow or its
ae subclass instance

ame Add Lil' to
Cows less

ame
Simply output *.. hn3ysod

pass the the namel
instanl e if Cow is

over 3 yrs old. Oih

14. . . .................

Figure 2.17 Control Structure Example

36



if (cow.age > 3) prlntf("%c",cow.name);

else prlntf("Lil'%c",cow.name);

Figure 2.18 Example C Code

Another form of flow control is the synchro link. It forces one operation

to be executed before the second can execute. This allows the programmer to ensure

that two things which could be executed in either order, will only be executed in the

desired sequence. In Figure 2.19, for example, there is a synchro link from show to

ask. This is to ensure that the show operation executes before the ask operation.

MIJE new instance 1:1 =--i[iI -El=-

Sorry,__anima..._ attribute/value list
Vhat kind of---

synchro
to say sorry
before new T

animal prompt

Figure 2.19 Synchro Link Example

Synchro links are a useful tool in controlling the execution of certain operations.

However, they do not guarantee that the second method will follow immediately

after the first; rather, it only guarantees that the first operation will execute before

the second.

37



2. Prograph Database Engine

Before discussing the Prograph database engine, it is appropriate to first

define some new terms. The Database Engine is the set of primitives which perform

all of the functions normally associated with a database management system,

including all the functions necessary to create and maintain a disk-based database.

These primitives allow the programmer to manipulate databases, the tables stored in

the databases, and the clusters that make up the tables. The programmer can also

access the keys for a database table through primitives. Tables in Prograph databases

are composed of clusters which should logically be of the same type (i.e., all the

clusters should be an instance of a single class), but are not limited to this

convention. In its simplest form, a table represents data that the programmer has

grouped together. A Cluster represents the individual record being stored in the

database. The cluster is not restricted to any specific data types. "A cluster can

contain textual, numeric, and boolean (TRUE or FALSE) data, as well as Macintosh

structures (such as PICTs or ICONs) and Prograph objects (instances of classes)"

[TGS91, page 48]. A cluster is a way of taking an arbitrary collection of Prograph

objects and packing them into a single stream of bytes. The breaking up of objects

into clusters is transparent to the user; the user always sees the cluster asa collection

of data.The database engine allows the programmer the flexibility to model flat-file,

relational, object-oriented, and other databases as the programmer deems necessary.

[TGS 91]

A database can be accessed in one of three modes: query, update, or shared

mode; with the mode being determined when the database file is opened. Query

mode allows read-only access to a database by multiple users. Update mode is for

single-user reads and writes to a database. The share mode provides multiple users

38



both read and write access to the database.11 In the multiple user modes, all users

must open the database in the same mode (i.e., all users must be in either query

mode, or they must all be in share mode, but not a mixture of query and share).

Access to the data stored in the database can be through one of three access

methods: 12 direct cluster access, sequential key access, and random key access.

Direct cluster access means retrieving a cluster based upon its ID (each cluster has

a unique ID which corresponds to the byte offset of the cluster in the data file).

Sequential key access is the way clusters are retrieved based upon the ordering

imposed by the value of the key. For example, if the clusters were employee entries

and the key was last name, sequential key access would allow retrieval of employees

in alphabetical order. Random key access is how clusters are retrieved based upon

key/value matches. Suppose the employee record desired has the last name equal to

Smith; random key access allows the cluster corresponding to the key value equal to

Smith to be retrieved without having to visit all the intervening records first.

Prograph databases can contain multiple tables, and each table can contain

multiple clusters and multiple keys. In order to manipulate a cluster (record) in a

Prograph database, the programmer must first open the database file, then the tables,

and finally the keys (if applicable). This hierarchy must be adhered to or the

primitives associated with storing and retrieving clusters will fail and return an error

code that must be handled by the application.

All database primitives (i.e., database, table, key, and cluster primitives)

return as the left-most root an error code. If the error is a zero (0), the operation was

successful; if it is any other integer, then there was an error. This allows the program

to recover from errors by testing this output and branching as appropriate. It also

11. Multiple users refers to the ability to share a database across a network of Macintosh computers.
The database would reside on a File Server and the clients could acce- the data concurrently.

12. These are access methods in the classic database sense, not as in object-oriented methods.

39



allows the program to close all open database files in the event of an unrecoverable

error such as a "Disk Full" error.

40



III. WHY AN R/OODBMS

The previous chapters were presented to give the reader a basic understanding

of OOP, Prograph, relational databases, and object-oriented databases, and to act as

a common point of reference for ideas presented in this chapter and the next. This

chapter presents a discussion of some of the deficiencies associated in current

database systems. There is also a discussion of why a relational/object-oriented

approach is advocated and why this approach is taken. Finally, the reasons for

selecting Prograph as the language to implement these ideas are covered.

A. DEFICIENCIES IN CURRENT DATABASE SYSTEMS

This section covers the problems associated with building complex database

applications using existing database systems. The desired properties of each type of

system are also presented.

1. Relational Databases

Relational database technology and its limitations are the driving force

behind this thesis. Current implementations of the relational data model are very

limited in their ability to handle complex data types. That is not to say that the

relational model is no longer of value, as it still serves the purposes of many

applications quite well. As discussed in the previous chapter, however, the relational

databases that are currently available do not allow users to maintain the desired level

of abstraction and encapsulation of the data being stored and manipulated.

a. Limited Number of Data Types

The number of data types available is typically fixed in RDBMSs, and

is one area of concern for developers of new types of database applications.

Specifically, the lack of support for complex data types such as digitized pictures,

digitized sound, and composite objects. Some relational databases currently

41



available have the capability to store pictures in a database, but not sounds or

composite objects, and there is no way to perform a query based on a complex

object. In a CAD application, it is desirable not only to be able to store graphical

objects, but also to be able to perform queries based upon them. The ability to

display graphical objects based upon their properties is also very desirable.

All relational databases include support for simple data types (i.e.,

strings, numerical, boolean, etc.), and some even provide support for digitized

pictures. However, the real world we wish to model is much more complex than this.

The world we are attempting to model may include animated graphical objects,

sounds, and composite objects, just to name a few. There is currently no relational

database system that provides support for complex data types such as these.

However, it should be noted that some relational database systems do support free

form attributes, often called memos. These memo attributes are basically free form

text fields of arbitrary length, so they could be used as a pseudo-repeating field.

Also, as previously mentioned, some relational systems provide support for picture

objects, but they are limited in their functionality.

b. Loss of Abstraction

To correctly model data to be stored in a relational database, there must

be some form of decomposition of real world objects into flat objects. Occasionally,

certain contrived relations must be created to achieve a satisfactory level of

normalization. An example of this is a company database that contains employees,

dependents, and possibly several other entities. Since Dependents is a weak entity

related to an Employee entity, a possible method for implementing this relationship

is to create a separate relation for each entity. In other words, create one relation to

store instances of Employees, and another for instances of Dependents. This is an

awkward way to model this real world relationship because Dependents have little

42



to do with the company database. A more appropriate way to model this relation and

store the data would be with a multi-valued attribute of Employee; however, multi-

valued attributes are typically not supported by RDBMSs. The attribute of

Employee, call it Dependents, would store multiple instances of dependent entities.

By storing the entities as an attribute, there would be immediate access to the

dependant information whenever an employee object is retrieved.

To model this relationship in most RDBMSs requires two separate

relations, an employee relation to hold instances of employees, and a dependent

relation to hold instances of dependents. This greatly reduces the level of

abstraction, and in some complex systems adds to the level of confusion. It also

requires fairly complex algebra to retrieve some information. For example, if a user

wishes to retrieve a list of Dependents for each female employee, five relational

algebra statements are required. In the previous approach, only two are required, a

selection of all female employees and a projection of the Dependents attribute.

c. Tuples Lack Function

It is attribute values that are stored in a relational database. While this

is good for many bookkeeping applications, it is not desirable for many graphics

based applications. In the average relational database, displaying a tuple or specific

attributes of the tuple is a simple task that can easily be done by the database system.

This is because the values are simple ASCII text or numeric values. Displaying a

graphical object is not as simple. Consider the example of a multi-media database

that stores animated pictures and sounds as well as textual or numeric data. If the

user wants to display the animation sequence, the object retrieved had better have a

function called display to play the animation because a non-application specific

DBMS will not have the ability to do this. Also, if the user wants to play the sound

clip that is stored in the object, then there had better be a play-sound function

43



because the DBMS does not have this capability either. A display method could also

be written to display different things based upon the user's view of the object. This

is not possible in a relational database because the information in the database does

not carry any of the functions associated with the data. Therefore, current systems

are only as good as the applications programs written for each specific application,

as the data does not contain any information about how to handle itself.

d. Lack of Inheritance

Relational databases do not provide any means for defining attributes

based upon previously defined attributes. Instead of being able to inherit previously

defined attributes, the user must create new tables and new relationships between the

tables to accomplish the same goal. For example, an employee database consists of

employees who are all people. People all have the same general set of characteristics

such as color hair, color eyes, name, age, etc. All of the employees, in addition to

being people, are also members of a specialized group, such as hourly-employees

or salaried-employees, with their own specific attributes. Using an object-oriented

approach, each type of employee could be a descendent of the class People, and as

such would have the characteristics previously mentioned. In a relational database,

however, employee objects are represented as tuples in three different tables, one

table contains all instances of people, another contains all instances of

hourly-employees, and a third contains all salaried-employees. In an object-

oriented approach there would only need to be two tables, one for hourly-employees

and another for salariedemployees, because each type of employee would have all

the attributes of people as well as the attributes specific to their class (i.e., hourly or

salaried employees)

44



2. Object-Oriented Databases

Although, OODBMSs are a step in the right direction for database

technology, they lack certain features which make them inadequate for tomorrow's

applications. Specifically, the solid mathematical foundation and the standardization

of the relational data model makes it a more attractive solution for many applications

despite its limited modeling capabilities. If these deficiencies are overcome, there

should be no reason why OODBMSs cannot gain the "lion's share" of the database

industry, especially if they include the capability to efficiently model relational

databases.

a. Lack of Mathematical Foundation

Relational algebra operations can be proven to be complete and correct

based upon mathematical set theory, whereas OODBMS operations cannot. This is

because there is no core of operations that has been thoroughly tested and proven for

OODBMSs. This is definitely a limiting factor in OODBMSs because users want to

know that they are definitely going to get the correct answer when the database is

queried.

As previously mentioned, all relational operations can be built from the

following operations: union, difference, projection, selection, and Cartesian

product. These operations are based upon the ones developed by mathematicians,

and can be combined to form all other types of relational operations. This provides

the database user with a certain level of security as all operations conducted on a

database are guaranteed to be correct and complete.

b. Lack of Standardization

The other major deficiency in current object-oriented databases is the

lack of standardization of operations and class libraries, which is one of the strongest

features of relational databases. Although each vendor's version of a relational

45



database system may be different, the basic operations are all there and the systems

are therefore functionally equivalent. Such a core of operations does not exist in

object-oriented databases because object-oriented programming still lacks a formal

definition. Consequently some vendors provide languages that they call object-

oriented simply because they contain support for objects or abstract data types, but

not inheritance1 . Once an industry-wide standard is adopted, a core of features can

be required for OOPLs as well as OODBMSs and standardization will not be an

issue.

All the OODBMSs surveyed for this thesis provide a class library, but

each library is different. There is no standardization between systems, and one

cannot count on all the classes used in one system to be available in the next. If there

were a standard minimum set of operations required for all OODBMSs, and if it

could be proven to be complete, then OODBMSs would almost certainly become

more widely accepted.

c. Lack of Support for Relational Operations

This is understandable because object-oriented databases are not

normally organized into logical relations. Object-oriented systems provide their

users with a large storage area in which they can store any type of object. In the

interest of compatibility and completeness, however, why not provide support for

relational operations as part of the system? As this thesis points out, relational

operations can be added to an object-oriented database, and in fact should be.

Opponents of this idea might state that hierarchical and network databases are not

currently supported, so why support relational? The answer to this is easy, they

should all be supported [FN92]. The hierarchical data model lends itself to be easily

1. Systems supporting object, but not inheritance are more appropriately considered "object-based"
[Wegn87].

46



integrated into an object-oriented database, and to a lesser extent so does the

network. The flexibility of object-oriented languages and OODBMSs make it fairly

easy to achieve this goal, but that is another issue. Compatibility with the relational

model would definitely increase the credibility of OODBMSs. It would also open

the door for developers to build relational systems for users in an OODBMS to allow

for the future expansion of the database application as the needs of the customers

change.

3. Relational/Object-Oriented Management System

The Relational Object-oriented Management System (ROOMS) as

proposed in [Nels88, NMO90] is the model that this thesis is built upon. This

system, however, lacks secondary storage features and this short-coming is the

reason this thesis was written. The implementation proposed in this thesis adds the

capability to store data to secondary storage, turning the ROOMS concept into a true

database system.

4. Desired Properties of Database Systems

An extended relational system that could provide the ability to define

complex data types such as sounds, pictures (including animation), and composite

objects would be a good start. However, relational databases will never be a

complete solution as they lack the ability to store functionality associated with the

objects that they store.

Object-oriented databases need only add support in their class libraries for

relations, records, and relational operations. The five basic relational operations

should be supported in every OODBMS. This adds to the credibility of the system,

and would help to standardize these types of databases.

47



B. WHY A RELATIONAL/OBJECT-ORIENTED DATABASE

The main reason that a relational/object-oriented database is important is

because the world consists of objects that can and should be represented in a state

that more closely represents their true structure. An object-oriented database can

represent objects; however, current object-oriented database systems lack the

mathematical foundation relational databases provide. Relational databases lack the

modeling power of object-oriented databases, however, they provide a rich set of

operations and rules for manipulating data. A combination of the two is a logical

step in the advancement of database technology.

An example of how a relational/object-oriented database could be used was

presented in [Nels88] and bears repeating. The example is a real estate database. It

was pointed out that most real estate databases are already maintained by relational

database systems. However, if a realtor wants to maintain all of the textual data

regarding a piece of property, as well as blueprints and drawings of the house, most

relational databases fall short. Also the database is not capable of storing maps of

the surrounding neighborhood so that prospective clients can see what the general

layout of the neighborhood is like, where the schools and churches are, and so on.

In a relational/object-oriented system, each record for a piece of property could

have a blueprint stored in it as well as coordinates of the property that could be cross

referenced to an area map. Depending on the query, a textual listing of the property

information could be generated, or a picture could be displayed, or a combination of

the two could be displayed. Also if the realtor wants to give the prospective buyer a

map showing the property and its surrounding neighborhood, a map could be printed

by performing a query on the table holding the property listings as well as the objects

containing maps of the city.

48



C. WHY THIS WAS THE APPROACH TAKEN

This thesis extends the ROOMS concept into a full-fledged R/OODBMS. The

R/OODBMS is implemented in Prograph, an OOPL that includes built-in database

primitives for storing and retrieving objects in secondary storage. An R/OODBMS

is also currently being implemented in a commercially available OODBMS

[Spea92]. That implementation (when complete), along with this implementation,

will complete the proof of concept of the feasibility/viability of an R/OODBMS

which can meet the needs of both relational and object-oriented users.

Prograph was chosen as the language for this implementation primarily because

it does offer built-in database primitives, as well as other desirable features. This is

favorable because all of the file creation and accessing is done through these

primitives, allowing the design and implementation to focus on the relational/object-

oriented database concept rather than being bogged down with the details of reading

and writing information to the disk. Some features were exploited and are discussed

in the following chapter, however, these features can easily be replaced if desired.

Another reason for choosing Prograph is because it exists on the Apple Macintosh

which has a standardized operating system and routines available in ROM to handle

the manipulation of pictures and sounds much more easily than any other platform.

49



IV. AN R/OODBMS IMPLEMENTED IN PROGRAPH

This chapter presents the design decisions and basic assumptions made in the

development of this relational/object-oriented database system. The structure of the

database is described and the Prograph classes designed for this thesis are explained

in detail. Source code for all classes is contained in Appendix C.

A. BASIC ASSUMPTIONS

This database is built around six basic assumptions:

1). the database applications will be developed in Prograph

2). a persistent called current DB exists l

3). the records stored in each relation must be instances of the same type

4). all records being stored in a relation must be descendents of class

Record

5). every relation contains at least one key

6). every relational operation returns an instance of Temp Relation

Many design decisions affecting this implementation rely heavily on these

assumptions holding true. The following sections give more detailed descriptions of

why these assumptions were made and how they affect the database design.

1. Applications Will Be Developed In Prograph

This assumption is made because the only way to design classes in

Prograph is through the Prograph environment. Alternatively, it is possible to design

a Record class that contains an attribute which is a list; this list could be then be

treated as a "set" so that all the attributes of the record could be stored in a particular

position in the list. This would allow users to build relations without going into the

Prograph environment, as long as an appropriate interface is provided. However, it

1. This persistent can easily be created when the R/OODBMS application is created.

5U



would also reduce the types of objects that could be stored in a relation because users

would be unable to develop their own classes to be stored as records. Using the list

approach also reduces the objects being stored to values only. Therefore, a major

benefit of storing objects is lost because the value-only objects lack function.

Access to the Prograph environment is also required because some methods

of Record and Relation should be over-shadowed for user-defined objects to be

handled properly. The class Record, for example, makes some assumptions that are

only true for simple objects. An example is the keys method of Record which

defines every attribute of the user-defined record to be a key. This is a safe

assumption if all the attributes are simple such as a strings or real numbers.

However, if the attribute is not a simple type, it cannot be a key in a Prograph

database. For example, an attribute that is an instance of another class could not be

used as a key value because keys in Prograph are limited to boolean, integer, natural,

real, and string.

2. Current DB Persistent

A persistent is assumed to exist called current DB. It is used to allow locals

within methods to open the database tables without requiring the method to have an

input of the current Database instance just to pass it to the local. Since access to the

database file is achieved through the database id, and access to the Structure Table

is through the Structure Table id, both pieces of data are required to open an existing

relation. It was decided that the logical course of action is to use the persistent rather

than clutter every method with extra terminals.

This assumption is related to the database application and as such it is

assumed that the database developer will provide this persistent, or selectively load

it. The second reason for creating a current DB persistent is because Prograph allows

51



multiple database files to be open, and current DB provides a convenient place to

store an instance of the database currently being manipulated.

3. Relations Contain Records of the Same Class

To model a relational database, all the records in a relation must be of the

same class. The reason is because all records in a relation are made up of attributes,

each with specific domains. Each tuple in the relation has corresponding attributes

with the same domains. In general, it does not make sense to put different types of

records in one relation; rather, they should be stored in different relations. For

example, if the user decides to create two types of employee objects, say an

hourly-employee and a salariedemployee, to be stored in a database, then there

should be a class definition for each. If each type of employee is of a different class

because they differ in some way, then they should not be stored together in the same

relation. Even if they have exactly the same attribute types but function differently,

they should be separated into two different relations. This is primarily a database

application design issue, but this constraint is imposed to more closely adhere to the

relational model.

4. User-defined Records Must Be Descendents of Class Record

This is a very important assumption, because when the end-user tries to

create a new relation to be stored in the database the system looks for descendants

of class Record and only allows the user to select one of these dependents to be

stored in the relation. The system also names the relation based upon the name of

the class being stored in the relation. In other words, if the user wishes to create a

relation called Person, then there must be a class Person defined as a descendant of

Record and there must not already be a relation called Person declared in the

database. The assumption that relations are made up of records is used both directly

and indirectly in many methods.

52



5. Every Relation Contains At Least One Key

As previously discussed in Chapter II, the only way to access a cluster

directly is by using the cluster id, and indirect access is achieved through keys

associated with clusters. In order to access the clusters in the database, a key called

-primary key has been defined for all relations. The - is used to ensure that it will

be the last key associated with a table; also, if the user wishes to define a key called

primary key there will not be a name conflict. The value of this key is determined

by the application programmer. The intended use for this key is to store the primary

key (in other words a unique value associated with the record) of each record since

every record must be unique in a relation. However, this key is not limited by this

convention.

One use of the -primary key is to store a default value of 'a' or '1' for

every tuple. This has the effect of ordering the keys in the order in which the records

are written to the database.

6. Every Relational Operation Returns A Temp Relation

Every relational operation has to return the same kind of result for

consistency. It does not make sense to have one operation return a Relation while

another returns a list, or a Temp Relation, or something else. This is important when

considering the Cartesian product and projection operations. These two operations

do not normally return relations that look like any other relation.

The reason a Temp Relation is returned rather than a Relation is because

tuples of a relation are actually stored as instances of the class that defines them,

whereas the results of relational operations may not be instances of a specific class.

Temp Relations are written to secondary storage as lists, because Prograph does not
allow declaration of classes on the fly and because a Prograph list can have instances

of classes or any other object as an element. For example, if the user performs a

53



Cartesian product operation on two relations, the result is a new relation with tuples

containing all the attributes of the first relation and all the attributes of the second.

There is no way to anticipate all the Cartesian product queries the user will perform,

so there is no way to define a class for each Cartesian product result. Similarly, there

is no way to anticipate all the projections a user will make, so classes cannot be

defined for this operation either.

B. DESIGN DECISIONS

Before designing the classes for this implementation, some decisions as to the

structure of the database had to be made. These included how to represent the

relations and how to implement the relational operations.

It was determined that a class called Relation should be created. Instances of

this class require only three attributes. First is the relation name, which is taken

directly from the class definition of the class to be stored in the relation. Next is

attribute-names which is a list of all the attributes of the tuples in the relation. The

last attribute is attr-types, which is also a list containing the type of each attribute.

It was also decided that each relation should be stored as a Prograph database

table containing instances of Records as clusters, and that each instance of a

Relation would be stored in a Structure table. The Structure table contains a single

entry for each relation stored in the current database. These entries are instances of

Relation and have a key value associated with them for fast retrieval. The key value

is the name of the relation so all relations must have different names.

The decision was made to represent the relational operations as methods of the

class Relation. In examples provided by TGSSystems with Prograph, they have

implemented some of the relational operations as separate classes rather than

methods of a class Relation. In examining relational databases and the relational

model, it became apparent that the relational operations should be methods, rather

54



than separate classes. The relational operations are functions or operations that act

upon instances of Relations, and as such should be methods of the Relation class

rather than separate entities that act upon objects of type Relation. The latter

approach is more of a structured programming approach rather than an object-

oriented approach.

C. THE STRUCTURE OF THE DATABASE

The database files created by applications using these classes all contain a

Structure Table. This Structure Table, as previously mentioned, holds instances of

every relation created for the database. This table is required because once a relation

is created, information about it needs to be stored for future sessions. In a Prograph

database, this information about the relation must be explicitly written to the

database disk file or it will be lost from one session to another. This is because there

is not a single large repository for all the database applications to use as in most

OODBMSs. Each Prograph database is made up of two files, the database file and a

key file, which do not have access to information about any other databases.

Although Prograph database files automatically maintain the names of all the tables

associated with the database, other information about the attributes in each relation

is not maintained. Thus, without the structure table the user would have to create a

new instance of a relation and compute the associated attribute characteristics every

time a database is opened. Using the structure table approach, the user simply

retrieves the relation instance from the table when it is required.

When a new relation is created, the relation bears the same name as the class

whose instances will be stored as tuples in the relation. This class representing the

tuples must be a descendant of the class Record for this schema to work. Once this

is done a Prograph table named for this class can be created and tuples can be written

to the disk.

55



Every Relation, Temp Relation, and tuple is written to the disk file rather than

being stored in memory. This feature provides consistency and some level of

security for the data being stored. Previous implementations of ROOMS did not

have secondary storage features and therefore the data lacked any permanence. This

implementation has features that allow the use and manipulation of the data that is

stored to a disk file.

D. REQUIRED CLASSES

To implement a relational/object-oriented database in Prograph four classes

were designed. First is the class Database. Instances of this class are created for

every database that is opened by the user. This is necessary because Prograph allows

multiple databases to be opened at the same time, as well as a single database being

opened by more than one application. The Database instances maintain the path to

the open data file, as well as the information about the database file (i.e., the file

name and the volume id as well as the Structure Table id).

The next class that was required is the Relation class. This class is the

workhorse of this design, containing attributes describing the keys to access the

tuples of the relation as well as the path to the database. Most importantly, it also

contains all of the methods required to perform relational operations on the data in

the database. A descendant class of Relation is Temp Relation. This class

represents derived relations and modifies some of Relation's methods to handle

these temporary relations.

The last class required by this design is the class Record. This class is the root

of the sub-tree containing user-defined classes that will represent the tuples of a

relation. Each of the afore-mentioned classes are now described in greater detail.



1. Database Class

This class contains basic methods required to create and access a Prograph

database. A database object contains the following instance attributes: file name,file

volume id, database id, Structure Table id, and temp relation list. File name and file

volume id exist primarily to handle the opening and closing of the physical disk file

(necessary for multiple access to the file). The attribute database id is a pointer (or

path reference id) to the database file. Structure Table id holds a pointer to the table

in the database that contains all the relations associated with the database. Finally,

temp relation list is a list of temporary relation names created by user queries. The

temporary relations (which are simply Prograph tables) are cleaned up by the close-

db method.

Some of the methods required for this class are new-db, open-db, close-db,

new-relation, and display-yourself. There are several other support methods not

critical to the design of the overall system. The first method, new-db, presents the

user with a standard Macintosh file creation dialog box and then creates the database

files (database and key file) using Prograph database primitives. It also creates an

instance of Database and a table in the database file to maintain the structure of the

database (the Structure Table). Once the Database instance has been created, it is

stored in a persistent named current DB to eliminate the need to constantly pass

database instances from one method to another. There is also some error checking

included to ensure that no NULL files are created.

The next method in this class is the open-db method, which is responsible

for opening a database file. It has no inputs because it uses Prograph primitives to

display a standard Macintosh file selection dialog box which allows the user to find

and select the database file to open. It then prompts the user to select the mode in

which to open the database (either share, query, or update mode). Once the files are

57



opened, an instance of Database is created and placed into the current DB

persistent and the database id is passed as the output of the method. Again there is

error detection and handling to prevent the user from opening a NULL file. If a

NULL file is selected this method generates a failure control and passes it to the

calling method to be handled.

Next is the close-db method, which removes the selected Database

instance from the current DB persistent, deletes any temporary relations, then

closes the database file.This method also requires no input and produces no output

as there is currently only support for one active database at a time.

A delete-db method is also provided to remove a database from the disk.

This method presents a standard file selection dialog box and once the selection has

been made, the user is asked to verify the delete. If the user acknowledges the delete,

then the database file and the key file are permanently deleted from the disk.

2. Relation Class

There are three instance attributes of this class; relation name, attribute-

names, and attr-types. Relation name contains the name of the class stored in the

relation. Attribuie-names is a list of attribute names of the class being stored in the

relation. The value of this attribute is taken directly from the user defined class,

which makes the application programmer responsible for putting in the correct

attribute names. Since each tuple is made up of one or more attributes, this list is

used to determine "union compatibility" and to verify selected attribute names for

projections and selections actually exist in the relation being queried. Attr-types

serves the same type of purpose as attribute-names, except that the elements of its

list are the attribute types (i.e., string, integer, etc.) of the entries in attribute-names.

This class contains many methods, some of which are required by other

methods and some which exist to reduce redundant code in other methods. The

58



major methods required are: select-relation, add-tuple, remove-tuple, display

relation, union, projection, selection, difference, and Cartesian product.

The method select-relation takes as an input a Database instance and

presents the user with a dialog box asking which relation to open. Once the user

makes a selection, the corresponding Relation instance is retrieved from the

structure table and returned to the caller. The purpose of this method is to retrieve

Relation instances from the database file for use in the application.

The add-tuple method takes as input an instance of a Relation and the tuple

(object) to be added. The tuple is checked to ensure it is of the correct type to be

stored in the relation. Then all of the key values are extracted so the appropriate key-

cluster associations can be made, including the -primary key value. It makes use

of a method defined for all Records called get primary key to get the value of the

primary key.

The remove-tuple method takes as inputs the Relation instance and the

tuple id, and has no outputs. It is assumed that the user will have already selected the

tuple to be deleted prior to calling this method.

Display-yourself is a method that displays the relation one record at a

time. This is a method that can be overshadowed to suit the needs of the application.

There is one input, the instance of the relation, and no output because the output is

directed to the screen.

The next five methods to be discussed are the relational operations.

These methods are able to handle any type of object that can be defined in Prograph.

The application programmer can, however, re-write methods for any of the basic

five operations to take advantage of the keys declared for their objects. For example,

the select operation may be too slow because it looks at each record and compares

the attributes to see if they are equal. If the attributes in question were stored as keys,

search times would most likely decrease.

59



The three inputs to every relati cnal operations are: a Relation, another

Relation (or Temp Relation) or a list, and the resulting relation's name. Every

relational operation also outputs a Temp Relation, which is stored as a table in the

Prograph database file with the resulting relation's name as the name of the table.

The union method opens both input relations and then writes every

tuple of the first relation to the Temp Relation created. It then reads each tuple from

the second relation and searches the first relation to see if their is a match. If a match

is found, then it is not included in the Temp Relation, otherwise, it is added to the

Temp Relation. This is done to ensure the uniqueness of every tuple in the result

relation.

The second input to the projection method is a list of attributes. The

attributes in this list are compared to attribute-names in the input Relation instance.

If they are valid, the method proceeds to read every tuple in the relation, writing only

the values of the attributes requested to the Temp Relation.

The second input to the selection method is the selection criteria in the

form of a list containing the attribute for the comparison, the operation (=, >, etc.)

and the value. The method calls upon the user-defined methods for equality (equal?

greater-than?, etc.) to determine which tuples should be put into the Temp Relation.

Default equality methods are defined in the Record class, but they are fairly simple

as it is impossible to anticipate every object defined for a record.

The Cartesian product method reads in a tuple from the first relation,

converts it to a list, and then converts every tuple in the second relation to a list and

appends them to first list. In other words, if the first relation has two tuples a and b

and the second relation has three tuples x, y, and z, then the result of the Cartesian

product will be a relation with six tuples: (a, x), (a, y), (a, z), (b, x), (b,.y), (b, z). This

method uses the -primary key to step through each relation. This implementation

60



could be looked at as two nested "For-statements" in a structured programming

language.

The difference method opens both relations, examines each tuple in the

first relation and compares it to every tuple in the second relation to see if they

match. If they do match, the tuple is not included in the resulting Temp Relation,

otherwise, it is included. The comparison in this method is based upon the user-

defined (or default) equals? method in the user-defined record class.

3. Temp Relation class

This class defines no new attributes; however, all relational operations are

redefined. The reason these methods are redefined is because the Relation versions

of these methods make the assumption that the attribute names are the names of

actual attributes of a class. In contrast, the attribute names associated with Temp

Relation objects are merely ways to locate the attributes based upon their position

in the list that they have been stored in. For example, if a Temp Relation is created

and has an attribute-names value of (lname, age), then a tuple stored in the Temp

Relation could be (Filippi, 27). To retrieve the age attribute of this particular tuple

the position of the attribute named "age" would have to be determined from the

attribute-names list. Since the value of the position of the "age" attribute is 2, a get-

nth (with n=2) could be performed on the tuple in question and the value 27 would

be returned. In the Relation version, to retrieve the attribute age from a person

record a "get" method is performed on an instance of person class with the attribute

name "age" injected into the operation.

All the changes to the relational operations have to do with how attributes

are retrieved and how they are accessed. The algorithms for performing the

operations are the same, so they will not be discussed further.

61



4. Record class

The Record class has three class attributes: attr-types, atir-names, and

keys. These attributes can either be set directly by the programmer when the classes

are defined (i.e., default values can be set), or they can be defined when they are

accessed. The purpose of the first two attributes is to provide the Relation class

attributes the values they need to keep track of the attributes of the tuples being

stored. The keys attribute is used to create keys for the relations in addition to the

-primary key. For example, the programmer may design records with an attribute

X that is the primary key, but know that many queries will be performed based upon

a non-unique attribute Y. Then the attribute Y can be declared as a key by placing

the attribute name Y in the keys attribute. Then when a selection method is written

to overshadow the selection method of Relation, the key Y can be used to retrieve

values from the relation, rather than reading every tuple to determine whether the

condition is met. This is useful if the database application programmer wants to

create a descendant of Relation and overshadow some of the relational operation

methods. The applications programmer can then write these methods in such a way

as to take advantage of the key and speed up the query.

The methods provided with the Record class are attr-types, attr-names,

keys, equal?, display-yourself, and get primary key. The first three methods are set

methods 2. These methods can be overshadowed by the programmer if deemed

necessary. The keys method treats every attribute as a key and sets the value of the

keys attribute to a list containing the attribute name of all the attributes of the class.

This is fine if all the attributes are simple, but if the attributes represent a list or an

instance of another class, they will not make valid keys and the system will most

likely crash.

2. Set as in "set" or "get", vice "set theory".

62



The equal? method evaluates two records and determines equivalence. If

the objects are composed of simple attributes, this implementation of equal? works

fine because the objects entering the method are converted to lists, and the lists are

compared with the "=" primitive. For more complex objects an equal? method

should be defined by the application programmer.

Display-yourself is a method that simply invokes the display primitive. If

the record contains special types of objects such as pictures or sounds, it may be

more desirable to create a display-yourself method with the appropriate interface to

best display the object. Even for simple objects, a display window could be designed

to make the result more aesthetically pleasing.

The get primary key method must be over-shadowed unless the first

attribute defined for the user-defined class is to be the primary key value. This

method is designed to get the value of the first attribute declared in the class and use

it as the primary key. If the primary key value is to be something more than a single

attribute, the method should be over-shadowed. An example is, a company database

that contains a relation between employees and projects. The combination employee

number and project number might be the only way to distinguish one tuple from

another (i.e., the primary key). If this is the case the getprimary key method could

be written to get the values of employee number and project number, concatenate

them together and return the catenated value as the output of the method.

63



V. SUMMARY, CONCLUSIONS, & SUGGESTIONS FOR FUTURE
RESEARCH

The purpose of this research was to design and implement a relational/object-

oriented database system with secondary storage features. This was a continuation

of a previous research project and has satisfactorily demonstrated that the concept

of a relational/object-oriented database management system as proposed in [Nels88,

NMO90] can be extended to a system with secondary storage.

A. SUMMARY

A detailed literature review was accomplished in which object-oriented

programming, databases, and Prograph were investigated. The feasibility of creating

a relational/object-oriented database system was determined, and an

implementation was proposed and implemented.

The implementation is language dependant, but shows that the concepts are

valid for any OOPL with secondary storage features. Therefore, the concepts

proposed are also valid for an OODBMS (which can be considered to be

specializations of OOPLs).

B. CONCLUSIONS

OODBMSs can be used to store and manipulate relational databases. Since it

was shown to work in a lisp-based language designed to be bolted on top of an

OODBMS [Nels88, NMO90], and it has now been shown to work in an OOPL with

secondary storage features, it is safe to say that it should work within any OODBMS.

Since OODBMSs contain all the features of OOPLs, along with the ability to handle

the storage and retrieval of data to and from secondary storage devices, they should

therefore be able to handle both relational, and object-oriented data within the same

system.

64



C. SUGGESTIONS FOR FUTURE RESEARCH

Future research in this area should include, but is not limited to, the following

areas: implementation of relational operations in a commercially available

OODBMS, optimization of relational operations in an OODBMS, allowing

complex objects to be keys, declaration of a standard class library for OODBMSs to

include the relational operations, and extension of the ideas presented here to

include addition of other types of databases to OODBMSs.

1. Implement Relational Operations in a OODBMS

Although this project implements a relational/object-oriented database, the

final proof of concept is whether or not this idea can be implemented in an existing

OODBMS. The class libraries available in OODBMSs are usually very rich and

should provide a means for implementing the ideas posed herein in a much more

elegant and efficient way.

Once an OODBMS implementation is completed, the proof of concept for

adding relational operations to an object-oriented database management system will

be complete.

2. Optimization of Relational Operations

The relational operations presented in this thesis were written to prove that

relational operations could be added to an object-oriented system with secondary

storage features. Although this was demonstrated, the time required for some queries

on large relations is unacceptably slow. This is because the relations are retrieved

from secondary storage and then written back to secondary storage in a different

form for every query. Disk access time, even on a fast system, makes these

operations perform at a less than desirable speed.

65



3. Allow Complex Objects to be Keys

In this implementation the values of keys are limited by the language to

booleans, integers, real numbers, or strings. In a general purpose R/OODBMS it is

important to allow arbitrarily complex objects to be key values in a relation.

Limiting keys to simple data types limits the usefulness of the system in much the

same way as the limited number of data types available in conventional relational

database systems limit their use.

4. Addition of Other Types Of Databases To OODBMSs

Although relational databases can be represented in an OODBMS, what

about hierarchical or network databases? Initial work has been done in this area

[FN92b], but a more detailed design and implementation should be attempted to

determine whether OODBMSs are able to efficiently handle the various data

models. The implementation of a hierarchical database and a network database

within an OODBMS should sufficiently prove the point that OODBMSs are indeed

sufficient to allow the storage and retrieval of all types of database systems.

5. Standardized Class Library For All OODBMSs

Once a determination as to the feasibility of implementing all the current

data models within the confines of OODBMSs is established, a logical step would

be the standardization of the class libraries associated with each vendor's

OODBMS. Just as SQL is the standard for relational database languages, a standard

minimum requirement should be developed for all OODBMS vendors. This would

ensure that regardless of which OODBMS you had access to, you would still be able

to use it to store and manipulate the type of data in any way desired.

66



APPENDIX A - CREATING A SAMPLE DATABASE APPLICATION

A. BASIC ASSUMPTIONS

It is assumed that the user has a working knowledge of Prograph and database

design issues. The primary purpose of this appendix is to show how to utilize the

tools provided in the classes written for this thesis.

B. DESCRIPTION OF THE METHODS PROVIDED

Appendix B presents all of the methods in each class in their graphical

representation. The inputs and outputs for the methods that will be directly called by

the user are annotated in the graphical representations. All of the methods that

should be called by the user are briefly described in the following paragraphs. For a

more detailed description of each method see Chapter IV and Appendix C.

1. Database Class

The following methods of the Database class should be used by the

applications programmer to create a database application.

a. new-db

Used to create new database files (the database and the keys file). This

method fails when the db-new primitive fails.

b. open-db

Used to open an existing database. This method fails if the db-open

primitive fails.

Closes an open database.

67



d. delete-db

Deletes an existing database from secondary storage.

e. rename-db

Rename a database.

f. display-yourself

Uses the show primitive to display a list containing the names of all

relations in the Database.

g. new-relation

Creates a new relation based upon the sub-classes of Record. This

method fails if the database is not opened in update mode.

h. delete-relation

Provides the user with a dialog box from which a relation can be

selected for deletion.

2. Relation Class

The following methods should be used by the applications programmer to

create and manipulate relations in a database.

a. select-relation

Presents a dialog box containing every relation that exists in the current

database, returning the relation selected.

b. add-tuple

Adds a tuple to a relation. The inputs are an instance of Relation and

an instance of a user-defined record (tuple).

68



c. remove-tupe

Deletes a tuple from the relation. It is assumed that the cluster id for the

object has been retrieved so the cluster (tuple) can be deleted.

d. union

Performs a union of two relations. Every tuple from the first relation is

written to the Temp Relation, and every tuple from the second is evaluated to see if

it is the same as one from the first relation; if it is, it is not written to Temp Relation.

This method fails if the two relations are not union compatible.

e. selection

Retrieves every tuple from the relation whose attribute(s) satisfy a

selection condition and places the results in a Temp Relation. If the attribute(s) used

in the selection condition does not exist in the relation, this method will fail.

f. projection

Retrieves only the requested attribute(s) from every tuple in the

relation, placing them in a Temp Relation.

g. Cartesian product

Produces a Temp Relation that contains tuples created by appending

the value of every tuple from relation number two to each tuple of relation number

one. The Temp Relation has as many attributes as the sum of the two input relations

and as many tuples as the cross product of the relations.

h. difference

Produces a Temp Relation with all of the attributes that are in the first

relation not in the second relation. This method fails if the two relations are not

union compatible.

69



i. display-yourself

Uses the system defined primitive display yourself to display every

tuple in the relation.

3. Temp Relation Class

The methods of this class have the same functionality as the Relation class

methods of the same name. The only difference is that these methods have as the first

input to each relational operation an instance of a Temp Relation, whereas the

Relation counter-parts have a Relation as the first input to the relational operations.

4. Record Class

These methods will most likely be over-shadowed by descendents of

Record. However, since these methods must be present in some form, they are

included in the class definition of Record.

a. =, A <, >, _4 : 2

All of these methods take two tuples and compare them. The

comparison operations provided here are based upon the tuples containing simple

attributes, and the attributes values are compared to determine equality.

b. display-yourself

This method uses the system defined display primitive to display the

record.

c. get primary key

This should definitely be over-shadowed unless the primary key

happens to be the first attribute declared in the record class.

70



C. BUILDING A DATABASE APPLICATION

1. A Simple Application

The sections that follow will take you through creating a yrx basic

database application which can be run in the Prograph Editor or compiled into a

stand alone application.

2. Basic Description of the Application

We will be creating a simple database of people records. There will be two

kinds of people, students and teachers. Each type of person has the attributes: last

name, first name, age, sex, address, and widget. The first four attributes are simple

attributes, the address attribute is another class containing the attributes number,

street name, city, state, and zip code. The widget attribute is an arbitrarily complex

object.

Since we have two different types of people, we will create the class people

with the descendants students and teachers. Since Prograph does not currently

support multiple inheritance, people must be a descendant of Record, and students

and teachers must be descendants of people.

We will now show how to create a single database to hold the relations

students and teachers, and how to perform relational operations on these relations.

3. The First Step

The first thing to do after opening Prograph is open the Classes window by

selecting it from the Windows menu. Next, selectively load all the classes from the

file Thesis.pgs. This is done by selecting Open from the File menu. When the open

file dialog box appears click on the Selective Load check box (this will also

automatically select the Incremental Load check box), navigate to the file Thesis.pgs

and choose the Open... button. This presents a list of all the classes in the file. Select

71



every class by holding down the shift key and clicking on every class name (all of

the current Prograph System Classes are included in this file). Now do the same

thing with the Universal methods. Open the Universal window by selecting

Universal Methods from the Windows menu and repeat the steps above for opening

the Thesis.pgs file. Instead of a list of classes in the selection window, a list of all the

methods in the file is presented. Select only the methods named make list, make

class list, and read & write. The final thing to do is open the Persistents window by

selecting it from the Windows menu and create a new persistent by clicking in the

white space of the window. When the new persistent appears, name it current DB. It

is very important that it be named correctly, note that Prograph is case sensitive, so

it must be typed exactly as it appears.

4. Create The Classes

Open the Classes window (which looks like Figure A.2). Click anywhere to

create the address class. Once a class icon appears in the window, type address and

then double-click on the left side of the icon to open the attributes window for the

class. This is where the attributes number, street name, city, state, and zip code are

created and given default values. Click in the white space of the attributes window

to create a new attribute. When the icon appears, type in the attribute name (i.e.,

number). Do this for every attribute. After creating all of the attributes, close the

window so that the Classes window is in view.

Repeat the above procedure for the people class. Except this time after

creating and naming the address attribute, double click on it. A window opens that

allows the value of the attribute to be set. Scroll up the list on the left to the word

address. Select address by clicking on it and then press the OK button. The default

value of the attribute address is now set to be an instance of the class address.

72



ystem

Application Menu Menu Item Vindow Vindow Item

Database Relation Record

Temp Relation

Figure A.1 Classes Window

kext, create a sub-class of people. Begin by clicking on the people class

icon. Then while holding down the option key, move the mouse to some white space

and click the mouse button. A new class icon will appear with a line connecting it to

the class people. Type the word students to name the new class, then repeat the

procedure and create a new class called teachers. Once this is done the Classes

window should look similar to Figure A.2. Now that all attributes for students and

teachers are finished, the only thing left to do is to attach the class people to the

Record class icon. Do this by clicking on the Record class icon until it highlights,

hold down the option key, and click on the people class

The user interface can now be designed as in any Prograph application. The

next few paragraphs present a very basic interface; for more detailed information

refer to [TGS88a, TGS88b, TGS91].

73



Yjstem

Application Menu Menu Item Vindow Vindow Item

Database Relation Record

Temp Relation
people address

students teachers

Figure A.2 After Building New Classes

5. Creating the Interface

Keep ir mind that the windows to be used for data entry, the windows to be

used to display the results of queries, and the query building window must be

developed. Since this application has relatively few queries that will be performed,

we will create a button for each specific query (e.g., a button for selection, a button

for projection. etc.). Another possibility would be to provide an interface that allows

the user to build queries dynamnically.

74



a. Creating the Query Interface

To create the query interface, select Edit Application from the Exec

menu. This brings up a window that allows windows and menus for the application

to be created. We will now create a window that contains five buttons representing

the five basic relational operations. Select Window from the Classes scrolling list

on the lower left-side of the window, and then click on the >New Instance> button

below the list. This creates a new instance of window named Untitled. Double-click

on Untitled to open it for editing. Once the window is created, click in the white

space to create a new object. Once the object appears, double-click it to open a

dialog box to set the type of the object. When the dialog box opens, Button is

selected by default so all that is required is to click the OK button. Once this is done,

another dialog box opens which allows the button to be named and a method

associated with it to be called when the button is clicked. Name the button Selection.

There is also a field for Click Method, type in "Selection", and click the OK button.

This button, when clicked, executes a universal method called Selection. Create the

other four methods just like the Selection button. Once they are completed, hold

down the option and command key and double click on the white space in the

window. This brings up a dialog box that allows the window to be named and other

parameters to be set. Type in "Queries" in the Window Title field then click OK.

The interface for the queries window is now complete.

b. Creating the Data Entry Interface

To create an interface to allow the user to enter data into the database,

create a new window as previously described. Rather than Buttons, create Edit Text

objects on the window, one for each attribute of people objects (including the five

for address) except for the complex object widget, and name the objects the same

names as the attributes they represent. These Edit Text objects will be used by the

75



end-user to type in the values to be stored in the relation. Depending upon what type

of object a widget is, an interface specifically designed foi the widgets wouid. have

to be created. Also create a button named Student and another named Teacher.

Once this has been completed, name the window (just like the previous window)

"Data Entry" and then close the window.

Now select each window from the scrolling list on the Application

window and press the Add To Active List button. This adds the new windows to the

application, and these windows will be opened upon start-up of the application.

c. Creating the Menus

Finally, a menu should be added to the application that allows the end-

user to open and close databases as well as select relations to open. To create a menu,

select Edit Application from the Exec menu. When the window opens select the

Menus radio button and create a new instance (just like when the window instances

were created) and open it for editing. Name the menu "Database", and tab to the

Item field. Type "New DB" in the Item field. Tab to the Method field and type "New

DB", then click the Insert After button. Repeat these steps for "Open DB" and

"Close DB". Click the OK button when finished. Now create a menu called

"Relations", and create menu choices for "Open Relation" and "New Relation".

Now return to the Application dialog, select the menus just created, and

click the Add To Active List button. This adds the new menus to the applications

menu bar when it is run.

D. COMPLETING THE DESIGN

Now that the interface has been built, run the application and build the methods

for each button and menu item created while the program is executing. To do this,

select Run from the Exec menu. Both windows should appear, unless they were

76



designed on top of each other. If this is the case, select the title bar of the foreground

window and move it to expose the other window.

Once both windows are visible, select New DB from the Database menu. A

dialog box is presented stating that the universal method "New DB" does not exist,

do you want to create it? Respond by clicking the OK button. This will open a

method window with a dotted background. Double-click in the window to open its

editable case window. Now create an operation to call the new-db method in the

Database class. This method does not require any input terminals, and when

Prograph menu items call a method they always send it the instance of Menu, the

Menu Item, and an Event Record. Close the case window and press return to

activate the operation that was just created in the method window. When this

operation executes it will present the dialog box previously describe for the new-db

method. Now do the same thing with the Open DB and Close DB menu items.

Repeat the above procedures for the Relations menu except that when adding

the operation to each case window, it will be necessary to create an additional

persistent operation to get the value of current DB to feed into the Relation/select-

relation method (to open a relation) and Database/new-relation (to create a new

relation).

Now that the menus are done, the same type of thing must be done for the

buttons in the windows. The Queries window buttons will all require the user to

specify which relation/relations will be operated on, and what the resulting Temp

Relation will be called. The values can be obtained by using select-relation to get

the relation instances, and the ask primitive can be used to get the result name as

well as the list of attributes or selection condition depending on the relational

operation being performed. The root of the relational operations can be attached to

the Temp Relation/display-yourself operation (which will display every tuple in the

77



Temp Relation). In a more sophisticated implementation a window with scrolling

fields or other features would be used

The Data Entry window has only the two buttons Student and Teacher, and

the methods for these buttons can be created the same way as the previously

discussed buttons and menu items. For this implementation the buttons will both

make use of the Relation/add-tuple method to add the tuples to the database. They

will differ in that each will create an instance of the appropriate class (either

students or teachers) and this instance will be written to the correct relation by the

add-tuple method.

Once all the buttons and menu items have been created and fully implemented

a very simplistic application has been constructed. It could be compiled into a stand-

alone application by the Prograph Compiler or it can be used in the interpreted

mode. Naturally, some of the other features provided have not been discussed, but

could be easily implemented.

E. DETERMINING WHICH METHODS TO OVER-SHADOW

1. Database Class

The only method that might require over-shadowing is the display-yourself

method. This method displays a list containing every relation defined for the

database. It uses the show primitive to display the list of relation.

2. Relation Class

The display-yourself method could be over-shadowed by the programmer

because the current implementation reads every record in the relation and displays

them with the display primitive. Some of the relational operations could also be

over-shadowed (as mentioned in Chapter V) to take advantage of keys associated

with the user-defined records.

78



3. Temp Relation Class

None of the Temp Relation methods should be over-shadowed.

4. Record Class

Virtually all of the methods associated with Record can be over-shadowed.

The purpose of this class is to act as a guide for developing new records, but the

methods make no assumptions about the structure of user defined record. The only

assumptions made in these methods are that the class attributes contain the

appropriate values. What values go into these attributes are completely up to the

designer.

The equality operations (=, =, <,>, <, and >) should be over-shadowed to

correctly handle comparisons of the objects. If these are not over-shadowed, some

relational operations may not return the expected results.

Display-yourself should be overshadowed to properly display the objects.

If it is not over-shadowed, the display primitive is used. This method should be

over-shadowed as part of the user interface design so when the records are

displayed, your windows are used.

79



APPENDIX B - ATTRIBUTES AND METHODS

V Database

V
file name

0

7
file volume id

0

7
database id

0

17
Structure Table id

()

V
temp relation list

(MDatabase

[ Input: None f Input: None [ 1 Input: <<Database>>

Output: DBId Output: None Output: <<Relation>>

new-db delete-db new-relation
A= Input: None

SInput: None r~1 Input: None Output None
Output: DBId LJ Output: None delete-relation

open-db ren&.ne-db
Input: None

Input: None Output: None

Output: None Uses the show primitiveto display a list containing temp relation list
close-db display-yourselIthe names of all relations

in the Database

80



V Relation

V
relation name

attribute-names
()

V
attr-types

gRelation
[ Input: <<Relation>>

Output: Tableld n> Input: <<Relation>>, <<Relation>>, resultnameOutput<<Temp Relation>>
open table union

Input: <<Relation>>,list of the form
[ Inpu: <<Relation>> I f ( attribute, operator, value), resultname

Output: Primary key Id, Table Id Output: <<Temp Relation>>

open to first tuple selection

Input Dd Input: <<Relation>>, list of attributes, result_name
InOuput: Tabld 5 Output: <<Temp Re!ation>>Output: Tableld ~Ot

select-relation projection

[ Input: <<Relation>> Input: <<Relation>>, <<Relation>>, result_name

Output: None [ I Output: <<Temp Relation>>

display-yourself difference

[ Input: name, <<Relation>> I Input:<<Relation>>, <<Relation>>, result-name

Output: <<Temp Relation>> Output: <<Temp Relation>>

make Temp Relation Cartesian product
Input:emable i deIpt < eato> ,<R lto>

tInput: Table Id, tuple Output: <<Relation>>, <<Relation>>

add-tuple verify union compatibility

[ Input: <<Relation>>, Cluster ID
Output: None

remove-tuple remove duplicates and write R2

81



VThmp Relation

NULL

relation name
NLL

attribute-names
NL

attr-types

M Temp Relation

SInput: <<Temp Relation>>, <<Temp Relation>>, result_name
Output:<<Temp Relation>>

union
Input: <<Relation>>,list of the form

attribute, operator, value), resultname
Output: <<Temp Relation>>

selection

SInput: <<Temp Relation>>, list of attributes, result_name

Output: <<Temp Relation>>

projection

Input: <<Temp Relation>>, <<Temp Relation>>, resultname
Output: <<Temp Relation>>

difference

Input:<<Tamp Relation>>, <<Temp Relation>>, resultname
Output: <<Temp Relation>>

Cartesian product

SInput: an empty list, the list to be decomposed
Output: decomposed list

decompose lists

SInput: an empty list, 'the list to be decomposed
Output: decomposed list

open Temp Relation

82



V Record

5
attr-types

attr-names

keys

MRecord

Input: <<Record>>

Inputs: <<Record>> Output: none
Output: <<Record>> with value of attr-types Uses display primitive to show an instance
set to a list of attribute values of a Record. This method should be

a t t r- t y p e s overshadowed by the user of these classes
d i splay-you r seIf

Input: <<Record>>

Output: <<Record>> with keys set equal to
a list of all attribute names. Input: <<Record>>

keys All attributes will be treated as key Output: primary key value
values unless this method is over-shadowed This method selects the first attribute created

j for objects of this class and returns its value
Input: <<Record>> as the primary key. This Method should be
Output: <<Record>> with attr-names set to OVER-SHADOWED by the user
a list of attribute names get primary key

attr-names

Input: 2 tuples Input: 2 tuples
Output: None. Suceeds or Fails Output: None. Suceeds or Fails
Compares all attributes of two tuples Compares first attributes of each
and determines equality.L tuple and determines >.

Input: 2 tuples Input: 2 tuples

'[ Output: None. Suceeds or Fails Output: None. Suceeds or Fails
Compares all attributes of two tuples[ Compares first attributes of each

and determines inequality. tuple and determines

Input: 2 tuples
Output: None. Suceeds or Fails Input: 2 tuples

Compares first attributes of each Output: None. Suceeds or Fails

tuple and determines <. Compares first attributes of each
< > tuple and determines a.

83



APPENDIX C - SOURCE CODE

E3Classes

System

Application Menu Menu Item Window Window Item

Database Relation Record

Temp Relation

84



V Database

V
file name

0V
file volume id

0

17
database Id

0

17
Structure Table id

()

V
temp relation list

(ODatabase

(~I Input: None Inu:None Input: <<Database>>
Output: DBId Output: None Output: <<Relation>>

new-db delete-db new-relation
Input: None

Input: None Input: None Output: None

Output: DBId L Output: None delete-relatIon
open-db rename-db

Input: None

( Inpul: None Output: None
Output: None Uses the show primitive

to display a list containing temp relation list
close-db display-yoursellthe names of all relations

in the Database



V0"Database/new-db 1:2

Sii

Ye s~d'NL -

c u r r ef D B d B

S1. Nowfileawas craewudyulk:t r gi

MOM bas /nw-d86:



O'BDatabase/new-db 1:2create table D' key 1:1

§~al-o §3Stu5ueTal

§3.l-cos Relatio Table

~~Databaee-bn 2mk ntaci:

1.Structure Table I

§2. strig sesitie unqu7



MDatabase/open-db 1:3

db-shutdowI322p) 37- ( '*FdB')

~DatbaU/ bopend 2:

§1
0

No yes

asns*we r

DBId

§1. No database was selected, would you like to try again ?

MDatabase/open-db 3:3

NULL

=Id

88



MDatabase/open-db 1:3select a mode 1:1

share

asnewer

§1. What mode do you want to open the database in?

0Dat abase /open-db 1:3make DO Instance 1:1

MaDaabase>

§1.uc Stucur Table _

89



MDatabase/close-db 1:1

current DO

~Oatbas/c~oe-d I~lpdatabae 1:1

90p elton 14



MDatabase/delete-db 1:2

Yes(' XF d 0'dee

//delete-d

§1. NAe o u ueyuwn odlt h database wase selecited woutd you dikatotryagan:

91



MDatabase/rename-db 1:2

§2. Wat I the ew nme fr thedataase

selabe nmed §22

ase

V/d ae ome

§1. Noic datbase as seeced woul yo lne totyagi

§2. hat s th newnam forthe atabs92



MDatabase/display-tiourself 1:1

§1.rcr Relatio Tabl

0Dat abase /di splayj-yourself 1:l1make list 1: 1

93



MDatabase/new-relation 1:2

-<CD<tabase/nreo>o :

0§1

nsowe rela

§1.NoReltin sleted wuldyo lie o ra eatitoD

00atbas/ne-reltio94:



(BDatabase/new-relatlon 1:2get class name 1:1

List of tables
that already (Record)C
exist In DB

Kmake-class lie

Edetaceh -- removes 'Record'

0 from the list

maeeiible list
§1

Selected Class name NUULL

§1. Please select the class being stored in this relation.

MDat abase/new-relation 1 :2make Relation Inst. 1:1

MIS



0Database/new-relation 1:2add Relation to 130 1:2

~Database/newreation :ddRltoto022

§1 Te tbae s otopnd ithbae ore moeMutbin upd moelfortisn to ucceed

96



0Database/new-relation 1:Zstore relation In ST 1:2

~~D~atabasewrlto :soerlto nS :

pT

§1. Stuctur Tabl

§1. You must be in update mode to perform this operation.

Ml~atabase/new-relation 1:2get class name 1:lmake eligible list 1:2.

(i n)

o x

97



MDat abas e/new-relat Ion 1:2get class name 1: 1make eligible list 2:2

(I n)

L/det a ch -nt t

98



10Database/delete-relation 1:22

~database_ deee-eaioP:

§1§

do:eetin c vIee.ryelt

§1. o tbe aelect ed woul youlie to ty agained.

00aabae/elee-rlaio92:



vfD"a tab ase /delete- relation 1:2uerlfg delete 1:2

§2 § I

Join

shNo

§1. Will te deeesd dt soitdwt t7

§2. 'The Yurelt o att eee h al ae

MDat abase /delete-relation 1:2doif delete 2:2

D o nd Rlto aet

be deleted

remove from STE taede let

_ _ _ _ _ _ _0 0

100



MDat abase /dele te-relation 1:2do deletion 1:lremoue from ST 1:1

§2. Structure Tabl

keyo



40Database/temp relation list 1:1

102



V Record

8
sttr-types

attr-names

6
keys

SPRecord

Input: <<Record>>
Inputs: <<Record>> Output: none
Output: <<Record>> with value of attr-types Uses display primitive to show an instance
set to a list of attribute values of a Record. This method should be

atIr-types [ J overshadowed by the user of these classes
display-yourself

Input: <<Record>>
Output: <<Record> with keyys set equal to
a list of all attribute names. Input: <<Record>>

keys All attributes will be treated as key Output: primary key value
values unless this method Is over-shadowed This method selects the first attribute created

cod>for objects of this class and returns Its valueg Input: <<Record as the primary key. This Method should be
Output: <<Record>> with attr-names set to OVER-SHADOWED by the user
a list of attribute names get primary key

ttr-n mes

Input: 2 tuples Input: 2 tuples
Output: None. Suceeds or Fails j Output: None. Suceeds or Fails
Compares all attributes of two tuples Compares first attributes of each
and determines equality.J tuple and determines >.

Input: 2 tuples Input: 2 tuples
Outpt: one.Suceds r FilsOutput: None. Suceeds or Fails

Compares all attributes of two tuples Compares first attributes of each
and determines inequality. tuple and determines <.

Input: 2 tuples
Output: None. Suceeds or Fails uInput: 2 tuples
Compares first attributes of each[7 Output: None. Suceeds or Falls
tuple and determines <. Compares first attributes of each

< tuple and determines >.

103



~Record/ at tr-types 1:1

ORecord/attr-types 1:1 get types 1:1

104



ORecord/attr-names 1:1

ratt rib ute

4ORecord/kegs 1:2

itt r-noame

keys

QRecord/keys 2:2

Iattr-name

keys

105



MRecord/displag-yourself 1:1

MRecord/get primary key 1:1

106



MRecord/- 1:2

()tuple I ) tuple 2

MRecord/- 2:2

0

tuple 1 tuple 2

107



ORecord/e 1:2

tuple itul2

MRecord/e 2:2

tuplo 1 tuple 2

108



MRecord/< 1:2

tupte iv ' kltple 2

a tr-nameil attr-nome

Jdetach detac-h-g

109



MRecord/> 1:2

tuple I Rtuple 2

t----m-- *,t-tr-nameA

detach- 
dotach-g

MRecord/> 2:2

tuple 1 tuple 2

110



ORecord/i 1:2

* tple I' ' tuple 2

etr-nome tt-na-me,

detach detac-'

MRecord/s 2:2

tuple I tuple 2



MRecord/k 1:2

tuple 1 P 'Atupte 2

*t$mtr-numea at-tr-nameo

Edetach- detach-A

MRecord/k 2:2

tuple I tuple 2

Vp

112



V Relation

V
relation name

NULL
V

attribute-names

()
V

attr-typee

{ Relation
in put: <<Relation >i
I Output: Tableld I input: <<Relation>>, <<Relation>>, resultname

F 1 Output:<Temp Relation>>
open table union

,n Input: <<Relation>>,list of the form
Input: <<Relation>> [J ( attribute, operator, value), resultname
Output: Primary key Id, Table Id Output: <<Temp Relation>>

open to first tuple selection

Input: <<Relation>>, list of attributes, result-name
Input: DBId Output: <<Temp Relation>>
Output: Tableld

select-relation projection

[ Input: <<Relation>> Input: <<Relation>>, <<Relation>>, resultname

Output: None [F Output: <<Tamp Relation>>

display-yourself difference

Input: name, <<Relation>> Input:<<Relation>>, <<Relation>>, resultname
Output: <<Temp Relation>> Output: <<Temp Relation>>

make Temp Relation Cartesian product

[ Input: Table Id, tuple Input: <<Relation>>, <<Relation>>
Output: None Output: <<Relation>>, <<Relation>>

add-tupls Iverify union compatibility

[ Input: c<<Relation>>, Cluster ID
Output: None

remove-tuple remove duplicates and write R2

113



MNelation/open table 1:1

c7c5elation no

114



MRelation/open to first tuple 1:1

0
ecurrent --- D < elation>

N t4t -ion namtO
0

database I

ro'at'ontable-ope

-- primary key

Irlmery 

ke

key-ops

0 0x

f I r a

115



ORelation/select-relation 1:2

DBld"*~table-Il.

916C

Mtable-op. UL

'1'r Tbleld

§1. Select the Relation you wish to open.

MRelation/select-relation 2:2

§1 DBId

No yes

EanswerI
DBId

yes o
es 3 10 n-abl

§1. No table was selected, would you like to try again 7

116



=Relation/display-yourself 1:1

<<ReatIon>>

tabl-cbscccc do ll ecors CCCCCCCC

key-eadoe

o ~ ~"'12key-flexU

diepl

117



ORelation/make Temp Relation 1: 1

current D0O 9
User selected Relation I
Relation name

attribute-name

118



OJRelaton/add-tuple 1:1

~Reltionadd-upl pimae ke le lit :

key e ke vlstls

assoiaterwitrthi

MRelation/add-tuple 11lrake keg ualue list 2:2

key list

U-

119 t eei



MRelation/remoJe-tuple 1:1

-c<Relatlon>> tuple (Cluster ID)

Et-ibjoclouccccc luster -dole t

120



1Relation/unlon 1:2

<<Relation 1>> <<Relation 2>> result name

R-k ?~~~~~e To Rel..uno__cmplblfiP31atio ~Tm Reain

ffR <ation/ Relati2:2

«Reatio 1. Relaion 2

Temp ~ Listo vr

RelationmtuRelation1

§1. ~ ~ ~ ~ ~ Meato/no Th2w:e2tosae o no cmail

121



O.R'elation/union 1:Zmake Temp Relation 1:1

current D R9
User selected Relation I

/Relation name

attribute-name

MRelation/union 1:2open Temp Relation 1:1

.c<Ternp Relaion >

relation nam4

Icreate tern relation table 3)2 topen tebi

-primary key

122



CONelaton/unlon 1:2write R I to Temp R 1:1

l oen-to first tupiQ

read &wrt

ftable.lo
Temp List of every
Relation instance In R

MRelation/union 1:2make 02 list 1:1

//o en t!_o .first -tup I

make list~c o

123



MHelation/unlon 1:2open Temp Relation 1:1 create temp relation table 1:1

Cc-u r -re--nt -D-B-D

x --- 
I

lostabase I

tablo-ne

-primary key

CCCCCCCCC key-nowEt I-abl 0 - C 10 9 Itccccc

MRelation/union 1:2write R I to Temp R 1: 1 read D write 1: 1

key-read

0 x )J ) JJ3_
Vkey-nexQ

[ a tt a c h -

MC-1-us t 9 r--w r I t

124



MRelation/unlon 1:2make R2 list 1: 1make list 1:2

MiRelation/union 1:2make R2 list I: Imake list 2:2

Milelation/union 1:2make R2 list 1:11make list 1:2do all Instances 1:1

125



IMReation/union 1:2make R2 list 1:Imake list 2:2do all lists 1:1

1261



ORelation/selection 1:1

p result-name
<<Relation>> list

etach-make Tern Relationl
<Relation>

lbp en to first tupl oe er eatoj

--------sleco o:ma e em Relato :

Use selctdetion

felationaname

agtthtutle-nm

127



MReation/selection 1: 1 open Temp Relation 1: 1

ORelation/selection 1:1 fiH operation 1:1

128



MRelatlon /selection 1:lget the tuples 1:2

Milelation/selection 1:lget the tuples 2:2

OFlelation/selection 1:lopen Temp Relation 1:lcreate temp relation table 1:1

129



MI'elation/projection 1:1

0- CLP

<<Relaton>> attribute Iist--..result-name

primary yTamrp Relation inst.

Temp Relation instance
A

OReat ion /projection 1:lmake temp relation 1:2

I attribute list

lattr-ty e

Tom Rela130



ff,1'-Rel aton /projection 1:1make temp relation 2:2

Relation attribute list

§1. One of the attributes selected does not exist In the selected Relation

ORelation/projection 1: 1 open Temp Relation 1: 1

o~~~~ ~ < rt vle oTemnp Relation

rea3on1 a



MRelation /projection 1: 1make temp relation 1:2check attributes 1:2

MRelation /projection I: Imake temp relation 1:2check attributes 2:2

NJoln

§1. does not exist in the specified relation.

§2. The attribute:

MFtelation/projection l~make temp relation 1:2make types list 1:1

Mget-nt

attacoh-

132



MRelaton/projection 1: 1open Temp Relation 1: 1create temp relation table 1: 1

ORelation/projection 1:l1process all tuples 1: 1write values to Temp Relation 1: 1

atrbute list

eLt all attributes ( 1U

0cluster-writa

MRelation/projecion 1:lprocess all tuples 1:lwrite values to Temp Relation I:lget all attributes 1:1

attribute list

[attach-

133



MRelation/difference 1:1

union c o 33,2: qq!

Mpatibill 2 ake To Relation,

<Relation> Relation>
doo,

r///I/-opep__to first tu I I/* on to first-tup-lig
Keyld Tabloid w 9/

R2 to 11-st UIL-Open To - p _ Relat-1-o-i

build-T= R ,3322312 table-clos

w w 9zZzMZ= I

MRelation/difference 11:11 12 to list 1:2

key-roe

0 X 32

'do instanes

--------- --

134



MRelation/dlfference 1:11 2 to list 2:2

Yrel1at Io-n- -nam

do list ey s

MlRelation/difference 1:lbuild Temp R 1:2

if there is a tuple in/ fomrpare to all of R2 xIRtht equals the current
tuple, this methd fails

MRelation/dif ference 1: 1build Temp R 2:2

QI

135



Mflelation/difference 1:11 2 to list 1:2do Instances 1:1

ORelation/difference 1:1R2 to list 2:2do list types 1:1

Mi~elation/dif ference 1: 1build Temp R 1:Zcompare to all of R2 1:2

136



ff'Relation/dif ference 1: 1build Temp R 1:2compare to all of R2 2:2

137



MRelation/Carteslan product 1:1

<<Relation>> <<Relation>> result name

RN i4 ny 11 a b I W -a --------- lotion <<Relation>>

prlm4 Z v -------
-primary key fi411o on tabl

ope c<Temp Relation>> -primary key
a N

Clopen -Tomp _ _Relatlo key-ope
fire

3.)333

)33

rocess tu les

MRelation/Cartesian product 1: 1 make Temp relation 1: 1

§1

pack current D )./;attrlbut9-na-me , ottrlbute-name_4

J attach- /tom rel tl (join

!:__P
Tom Relatio 

---attr-ty a
attribute-name

- ---------

(join

1 
tt

1

§1. relation name

138



MRelation/ Cartesian product 1:11process tuples 1:1

RI Keyld Temp R Tableld R2 Keyld

~~zz4 keyre

key-nex Inst-to-lie (.%;-

perocess Relation 2

MRelation/Cartesian product 1: 1process tuples 1:l1process Relation 2 1:2

vz,&139



ORelation/Cartesian product M:process tuples 1:lprocess Relation 2 2:2

140



MRelaton/lerfy union compatibility 1:1

~F~~aton/eri!J nin cmpaibiiU1:check # of attributes 1:

,_Reaation % «Rea tion yp9_

MRelation/uerify, union compatibility 1:lcheck $t of attributes 2:2

«<Relation> <Relation >

§1

Ip

§1. Relations do not have the same number of attributes, and cannot be unioned together.

141



OFtelation/remoue duplicates and write R2 1:2

cornpare all X

MRelation/remoue duplicates and write R2 2:2

O~lation/remoue duplicates and write R2 1:2compare all 1:2

ORelation/remoue duplicates and write R2 1:2compare all 2:2

142



VTemp Relation

NLU

relation name

attribute-names

attr-types

MpTemp Relation

[ Input: <<Temp Relation>>, <<Temp Relation>>, resultname
Output:<Temp Relation>>

union
Input: <<Relation>>,lIst of the form
( attribute, operator, value), result_name
Output: <<Temp Relation>>

selection

SInput: <<Temp Relation>>, list of attributes, resultname
Output: <<Temp Relation>>

projection

[ Input: <<Temp Relation>>, <<Temp Relation>, result-name
Output: <<Temp Relation>>

differenced r Input:<<Temp Relation>>, <<Temp Relation>>, resultname
Output: <<Temp Relation>>

Cartesian product

[ Input: an empty list, the list to be decomposed
Output: decomposed list

decompose lists

[ Input: an empty list, the list to be decomposed
Output: decomposed list

open Temp Relation

143



MTemp Relation/union 1:2

<<cRelation 1>> <<cRelation 2>--* result name

HoonToemp Relton

§1. ~ ~ ~ ~ ~ ~ m Thetonuo tw2e:iosaeno2no cmail

1.4 .F



MTemp Relation/union 1:2

<<cRelation I>> <<Relation 2>> result name

flo eato oneato 2 m

Relation Reryton

§1. ~ ~ ~ ~ ~ e Thetonuno 2:2eaiosaeno no cmai

145



OTemp Relation/union 1:2wrlte RNI to Temnp N 1: 1

lb ien to first tiig

O.read __A -wri-t.

Et I-Clog

Temp List of every
Relation instance In R

MIemp Relation/union 1:2make R2 list 1:1

Vlb Sfl to first tp

make list

3

table-cbs4

146



MTemp Relation/union 1:2remoue duplicates from R2 1:2

MTemp Relation/union 1:2remoue duplicates from R2 2:2

MTemp Relation/union 1:2make R2 list 1:lmake list 1:2

1479 r



MTemp Relation/union 1:Zmake R2 list 1: 1make list 2:2

OTemp Relation/union 1:2remoue duplicates from R2 1:2compare all 1:2

MTew Relation/union 1:2remoue duplicates from R2 1:2compare all 2:2

148



MTemp Relation/selection 1:1

~Re~a~on result..name

<<Relation>:'.o

<Relation> 331.

(i n) 3. )33 <Tern Relation>>
Itoi en to first tupli I, R //pen Tempt Relatil

~~Temp Relation/s leo 1:lge9tbo th ule 1:

M1emp Relation/selection 1:lget the tuples 2:2

key-roa
0 49



MTemp Relation /projection 1:1

<<Relt> trib te list result-name

pr may keyTemnp Relation inst.

Temp Relation Instance

MTemp Relation/projection 1:lMake temp relation 1:2

attribute list

--------- a t-rl--u--o-150M



MTemp Relation/projection 1:1 make temp relation 2:22

Relation attribute list

§1. One of the attributes solected does not exist in the selected Relation

MTemp Rela tion/projection 1: 1open Temp Relation 1: 1

-primary key

MTemp Relation/projection l1lprocess all tuples 1:1

k .atiue ls Table Id

0 33 X 33 1333 write vaue to Templ ReaioAn

Ekey- nexo

151



MTemp Relation /projection 1: 1make temp relation 1:2check attributes 1:2

MTemp Relation /projection I:lImake temp relation 1:2check attributes 2:2

§2 §1I

0J1in

§1. does not exist in the specified relation.

§2. The attribute:

MTemp Relation/projection I: Imake temp relation 1:2make tyjpes list 1:1

Uget-nt

attah-r

7tah

152



MTemp Relationlprolection 1:Iopen Temp Relation 1:lcreate temp relation table 1:1

MTemp Relation/projection 1:lprocess all tuples 1:lwrite values to Temp Relation 1:1

I)

attribute list
T
et ell- attributes

clusterwi

MTemp Relation/projection 1:l1process all tuples 1:lwrite values to Temp Relation 1:lget all attributes 1:1

attribute name
(I n)

etnt

az tIt a ch .r

153



OTemp Relation /difference 1:1

V/,/Iver!U, union cpMp!MbIII_ X 3332VIfiniske e p Rol tlom
<Relation> Relation>
_9C ----------

Vlflopon to first tg i Ho on to first--!"IQ

Keyld _0
g7p ------ ---

R2 o list open- Tamp- __IR,!W_1po6j

f/decom ose list

I- to- I st
W

write Ri R2 -to-T-emp-Ro - --------------
W

OTemp Relation /dif f erence 1:11 12 to list 1:2

key-read

0 X 13 2) list

$ 3
'do Instances
---- ------

154



MTemp Relation/difference 1:1R2 to list 2:2

do# list tyes

MTemp Relation /difference IAR1 to list 1:1

MTemp Relation/difference 1:lwrite RI - R2 to Temp R 1:2

list to Simpl t es!

cluster-writ

155



OTemp Relation /difference 1:lwrite RI - R2 to Temp R 2:2

MTemp Relation/difference l:1R2 to list l:2do Instances 1:1

MTemp Relation/difference 1:1R2 to list 2:2do list tyjpes 1:1

156



OTemp Relation/dif ference 1:l1write R I - R2 to Temp R 1:2list to simple types 1:2

MTemp Relation/dif ference 1: 1write Ri - R2 to Temp R i:2list to simple tyJpes 2:2

MTemp Relation/dif ference 1:i1write R I - R2 to Temp R i:2compare all 1:2

MTemp Relation/difference 1:iwrite RI R2A to Temp H i:2compare all 2:2

157



OTemp Relation /Cartesian product 1:1

KO" 11 1 11
--A- c<Relation>

<<Temp Relation>> result-name
-------------

tabl

_PrimarV

tabl ake Temp relatio& ""*N<<Relation>>

-primary key
<< ramp Relation> I/opvn ... tab A

ey.ope
L//key-ope ------

,IM4 n Tomp _j!ejetio primary key

Uke y--
r

4 prqcq§A A40as Dvgtoblo-clos
w w

FzW9ZZ,

MTemp Relation /Cartesian product 1: 1 Make Temp relation 1: 1

§1 
x I I

pack attr-name att-r-nam-e

att ch- w ----- (join

q/temp.. relation

Tom Relatio
attr- , attr-typea

'attribute-name

"(Join

It It r - t

§1. relation name

158



MTemp Rel at Ion /Cartesian product I: I process tuples 1:1

9
R 11 Keyld Temp R Tabloid R2 Keyld

key-roe

koy-f
k 0 y -n- 9 x pocess_ Relation 2

Memp Relation/Cartesian product 1: 1 process tuples 1: 1 process Relation Z 1:2

---ad

-rea
I k y-

0 x
3.

a I I

9_1 n 9 t - t o

i(fofn

Mc -1 _u -9 t_9 r- w _rl t 43

159



(Temp Rel ation /Cartesian product 1:lprocess tuptes 1:lprocess Relation 2 2:2

160



Ofemp Relation /decompose lists 1:1

ETemp Relation/decompose lists I:Ilist to simple tyjpes 1:2

fInstance. X

c cccc.c

m/ake IA

MTemp Relation/decompose lists 1:1llst to simple types 2:2

161



MTemp Relation/open Temp Relation 1:1

c<cTemp Relation>>

rel-a t io n -- namA

cre te ern reati n t bl /o o n tab l

-primary key

MTemp Relation/open Temp Relation 1:l1create temp relation table 1: 1

-primary key

162



LIST OF REFERENCES

[Alag86] Alagic, S., Relational Database Technology, Springer-Verlag, 1986.

[Booc9l] Booch, G., Object-Oriented Design with Applications, The Benjamin/
Cummings Publishing Company, Inc., 1991.

[Codd70] Codd, E., "A Relational Model for Large Shared Data Banks",
Communications of the A CM, June 1970.

[EN89] Elmasri, R. and Navathe, S. B., Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., 1989.

[FN92a] Naval Postgraduate School Report NPSCS-92-005, The Feasibility of
Implementing a Relational/Object-Oriented Database Management System
in the Gemstone Object-Oriented Database Management System, by Filippi,
S. C., and Nelson, M. L., April 1992 (draft).

[FN92b] Naval Postgraduate School Report NPSCS-92-006, The Feasibility of
Implementing Conventional Database Models in an Object-Oriented
Database Management System, by Filippi, S. C., and Nelson, M. L., May
1992 (draft).

[Kim9l] Kim, W., "Object-oriented database systems: strengths and weaknesses",
JOOP, July/August 1991.

[Meye88] Meyer, B., Object-oriented Software Construction, 1988.

[Mica88] Micallef, J., "Encapsulation, Reusability and Extensibility in Object-
Oriented Programming Languages", Journal of Object-Oriented
Programming v 1, April/May 1988.

[Nels88] Nelson, M. L., A Relational Object-Oriented Management System and An
Encapsulateed Object-Oriented Prograsmming System, lh.D Dissertation,
University of Central Florida, Orlando, Florida, December 1988.

[Nels90a] Naval Postgraduate School Report NPS52-90-024, An Introduction to
Object-Oriented Programming, by Michael L. Nelson, April 1990.

163



[Nels9Ob] Naval Postgraduate School Report NPS52-90-025, Object-Oriented
Database Management Systems, by Michael L. Nelson, May 1990.

[NMO90] Nelson, M. L., Moshell, J. M., and Orooji, A., "A Relational Object-
Oriented Management System", 9th Annual International Phoenix
Conference on Computers and Communications (IPCCC '90) Proceedings,
March 1990.

[NMO91] Nelson, M. L., Moshell, J. M., and Orooji, A., "The Case For Encapsulated
Inheritance", Proceedings of the 24th Annual Hawaii International
Conference on System Sciences (HICSS-24), Vol IL:Software Technology,
January 1991.

[Onto88] Ontologic Inc., VBase: For Object Applications, 1988.

[Onto9O] Ontologic Inc., Ontos Object Database Documentation, Release 1.5, 1990.

[PK90] Perry, Dewayne E., and Kaiser, Gail E., "Adequate testing and Object-
Oriented Programming", JOOP, January/February 1990.

[PBRV90] Premeriani, W. J., Blaha, M. R., Rumbaugh, J. E., and Varwig, T. A., "An
Object-Oriented Relational Database", Communications of the A CM,
November 1990.

[Serv89a] Servio Logic Development Corporation, Programming in OPAL, Part I,
1989.

[Serv89b] Servio Logic Development Corporation, Programming in OPAL, Part II, The
OPAL Kernel Classes, 1989.

[Spea92] Spear, R., A Relational Object-Oriented Database Management System,
Master's Thesis, Naval Postgraduate School, Monterey, California,
September 1992 (draft).

[SB86] Stefik, M. and Bobrow, D. G., "Object-Oriented Programming: Themes and
Variations",The Al Magazine, v 6, Winter 1986.

[TGS88a] The Gunakara Sun Systems, Prograph Tutorial, 1988.

[TGS88b] The Gunakara Sun Systems, Prograph Reference,1988.

164



[TGS91] The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

[Wegn87] Wegner, P. , "Dimensions of Object-Based Language Design", OOPSLA '87
Conference Proceedings, October 1987.

[Wu90] Wu, C. T., "Development of a Visual Database Interface: An Object-
Oriented Approach", Application of Object-Oriented Programming [PW90],
1990.

[ZM90] Zdonick, S. B. and Maier D., "Fundamentals of Object-Oriented Databases",
Readings in Object-Oriented Database Systems, 1990.

165



BIBLIOGRAPHY

[Beec88] Beech, D., "Intensional Concepts in an Object Database Model", OOPSLA
Conference Proceedings, September 1988.

[BZ87] Bloom, T., and Zdonik, S. B., "Issues in the Design of Object-Oriented
Database Programming Languages", OOPSLA Conference Proceedings,
October 1987.

[KBCG87] Kim, W., Banerjee, J., Chou, H., Garza, J. F., and Woelk, D., "Composite
Object Support in an Object-Oriented Database System", OOPSLA '87
Conference Proceedings, October 1987.

[KBCG88] Kim, W., Ballou, N., Chou, H., Garza, J. F., and Woelk, D., "Integrating an
Object-Oriented Programming System with a Database System", OOPSLA
'88 Conference Proceedings, September 1988.

[KL89] Kim, W., and Lochovsky, F. H., Object-Oriented Concepts, Databases, and
Applications, Addison-Wesley Publishing Company, 1989.

[LHR88] Lieberherr K., Holland, I. and Riel, A., "Object-Oriented Programming: An
Objective Sense of Style", OOPSLA '88 Conference Proceedings,
September 1988.

[PW90] Pinson, L. J. and Wiener R. S., Application of Object-Oriented
Programming, Addison-Wesley Publishing, 1990.

[Rumb87] Rumbaugh, J., "Relations as Semantic Constructs in an Object-Oriented
Language", OOPSLA '87 Conference Proceedings, October 1987.

[SZ87] Smith, K. E., and Zdonik, S. B., "Intermedia: A Case Study of the
Differences Between Relational and Object-Oriented Database Systems",
OOPSLA '87 Conference Proceedings, October 1987.

[Snyd86] Snyder, A., "Encapsulation and Inheritance in Object-Oriented Programming
Languages", OOPSLA Conference Proceedings, October 1986.

[WW89] Wirfs-Brock, R. and Wilkerson, B., "Object-Oriented Design: A
Responsibilty Driven Approach", OOPSLA '89 Conference Proceedings,
October 1989.

166



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Computer Science Dept. 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

4. Maj M. L. Nelson, USAF, Code CS/Ne 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

5. C. Thomas Wu, Code CS/Wq 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

6. Dr. A. Orooji
Computer Science Department
University of Central Florida
Orlando, FL 32816

7. Stephen C. Filippi, LT/USN 3
101 Bantry Drive
Lake Mary, FL 32746

167


